Angewandte
Chemie
Keywords: cyclization · fused-ring systems ·
.
microwave irradiation · radical reactions · synthetic methods
[1] A. J. Clark, Chem. Soc. Rev. 2002, 31,1 – 11.
[2] For recent references see: a) A. J. Clark,J. V. Geden,S. Thom, J.
Org. Chem. 2006, 71,1471 – 1479; b) F. Bellesia,C. Danieli,L.
De Buyck,R. Galeazi,F. Ghelfi,A. Mucci,M. Orena,U. M.
Pagnoni,A. F. Parsons,F. Roncaglia, Tetrahedron 2006, 62,746 –
757; c) B. Schmidt,M. Pohler, J. Organomet. Chem. 2005, 690,
5552 – 5555; d) B. A. Seigal,C. Fajardo,M. L. Snapper, J. Am.
Chem. Soc. 2005, 127,16329 – 16332; e) J. Robertson,M.
MØnard,R. Ford, Synlett 2004,2788 – 2790.
[3] a) W. R. Bowman,M. O. Cloonan,S. L. Krintel, J. Chem. Soc.
Perkin Trans. 1 2001,2885 – 2902; b) L. Yet, Tetrahedron 1999,
55,9349 – 9403.
[4] a) P. Quayle,D. Fengas,S. Richards, Synlett 2003,1797 – 1800;
b) C. D. Edlin,J. Faulkner,D. Fengas,C. K. Knight,J. Parker,I.
Preece,P. Quayle,S. N. Richards, Synlett 2005,572 – 576; c) J.
Faulkner,C. D. Edlin,D. Fengas,I. Preece,P. Quayle,S. N.
Richards, Tetrahedron Lett. 2005, 46,2381 – 2385; d) M. Helli-
well,D. Fengas,C. K. Knight,J. Parker,P. Quayle,J. Raftery,
S. N. Richards, Tetrahedron Lett. 2005, 46,7129 – 7134; e) C. D.
Edlin,J. Faulkner,P. Quayle, Tetrahedron Lett. 2006, 47,1145 –
1151; f) C. D. Edlin,J. Faulkner,M. Helliwell,C. K. Knight,J.
Parker,P. Quayle,J. Raftery, Tetrahedron 2006, 62,3004 – 3015.
[5] See,for example: H. M. Boehm,S. Handa,G. Pattenden,L.
Roberts,A. J. Blake,W.-S. Li, J. Chem. Soc. Perkin Trans. 1 2000,
3522 – 3538.
[6] For ATRC reactions leading to eight-membered rings see: a) D.
Bertin,D. Gigmes,S. R. A. Marque,P. Tordo, Tetrahedron 2005,
61,8752 – 8761; b) F. De Campo,D. LastØcoures,J.-B. Verlhac,
J. Chem. Soc. Perkin Trans. 1 2000,575 – 580; c) F. O. H. Pirrung,
H. Hiemstra,W. N. Speckamp,B. Kaptein,H. E. Schoemaker,
Tetrahedron 1994, 50,12415 – 12442; d) H. Matsunaga,T.
Ishizuka,T. Kunieda, Tetrahedron 2005, 61,8073 – 8094.
[7] For radical-based approaches to benzozocins see: a) S. Lang,M.
Corr,N. Muir,T. A. Kahn,F. Schönebeck,J. A. Murphy,A. H.
Payne,A. C. Williams, Tetrahedron Lett. 2005, 46,4027 – 4030;
b) see also Ref. [6a]; c) J. Wang,C. Li, J. Org. Chem. 2002, 67,
1271 – 1276.
Scheme 4. Proposed mechanism for the conversion of 3 into 6.
irradiation as above then resulted in the quantitative con-
version of 4 into 6.
The fact that control reactions show that lactone 4 is
thermally stable militates against the formation of the diene
17 and its subsequent rearrangement.[27,28] The finding that the
copper catalyst appears to be intimately involved in the
transformation of 4 into 6 leads us to suggest that the reaction
proceeds via the spirocyclic lactone 20,the product of a 4- exo
radical cyclization onto the aromatic ring.[29] Once spiro-
cyclization has taken place,presumably via the intermediacy
of radical 19,we envisage that lactone 20 suffers a rapid loss of
CO2 to produce the vinyl chloride 21.[26] Finally double
dehydrochlorination of 21 ultimately affords 1-chloro-
naphthalene (6).
Whatever the detailed mechanism[30] of this new benz-
annulation sequence,its ease of operation and potential
generality will doubtless enable the synthesis of a large
variety of aromatic systems from readily available intermedi-
ates. The application of this methodology to the synthesis of
novel aromatic scaffolds[31] and target-oriented synthesis is
now underway.
[8] For pertinent discussions see: a) E. Lee,C. H. Yoon,T. H. Lee, J.
Am. Chem. Soc. 1992, 114,10981 – 10983; b) A. L. J. Beckwith,
C. H. Schiesser, Tetrahedron 1985, 41,3925 – 3941; c) E. BacquØ,
F. Pautrat,S. Z. Zard, Org. Lett. 2003, 5,325 – 328.
[9] For an overview see: H. Ishibashi, Chem. Rec. 2006, 6,23 – 31.
[10] For a solution to this problem see: H. Yorimitsu,H. Shinokubo,
K. Oshima, Synlett 2002,674 – 686.
[11] See: a) Y. Motoyama,S. Hanada,K. Shimamoto,H. Nagashima,
Tetrahedron 2006, 62,2779 – 2788; b) L. Quebatte,K. Thommes,
K. Severin, J. Am. Chem. Soc. 2006, 128,7440 – 7441,and
references therein.
[12] Ligand 2 was prepared according to the method in: A. M. Magill,
D. S. McGuinness,K. J. Cavell,G. J. P. Britovsek,V. C. Gibson,
Experimental Section
A solution of the trichloroacetate 3 (640 mg,2.4 mmol) in degassed
1,2-dichloroethane (10 mL) containing CuCl (11 mg, 0.11 mmol) and
the ligand 2 (33 mg,0.11 mmol) was sealed under nitrogen in a
reaction vial and irradiated in a microwave reactor[18] for 2 h at 2008C.
On cooling the reaction to ambient temperature the solvent was
removed in vacuo and the black residue purified by column chroma-
tography (silica gel; eluent 10% EtOAc/petroleum ether) to afford
1-chloronaphthalene (6) (yield 327 mg,84%).
A. J. P. White,D. J. Williams,A. H. White,B. W. Skelton,
J.
Organomet. Chem. 2001, 617–618,546 – 560. This particular
catalyst system proved optimal for ATRC reactions leading to g-
butyrolactones and g-butyrolactams (J. Bull,Transfer Report,
University of Manchester, 2005). We are currently screening the
effectiveness of other catalyst systems in this reaction.
[13] Lactone 4 (1H NMR (300 MHz,CDCl 3,25 8C,tetramethylsilane
(TMS)): d = 2.75 (dd, J = 15,11 Hz, 1H), 3.15 (dd, J = 16,5 Hz,
1H),3.23 (dd, J = 15,4 Hz,1H),3.35 (dd,
J = 16,4 Hz,1H),
Received: August 21,2006
4.54–4.53 (m,1H),7.25–7.45 ppm (m,4H); 13C NMR (125 MHz,
Revised: November 11,2006
Published online: January 23,2007
[D]CHCl3,TMS): d = 163.7,151.6,132.3,129.7,126.1,124.9,
120.0,82.1,54.9,54.2,37.9 ppm; IR (film):
n˜1766 (s),1487 (m),
Angew. Chem. Int. Ed. 2007, 46, 1869 –1872
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1871