9
8
M.J. Maccarrone et al. / Applied Catalysis A: General 441–442 (2012) 90–98
catalyst, are quite different respect to those located on the bimetal-
lic PdNi/A or WPd/A catalysts: palladium is totally reduced in
[9] A. Papp, Á. Molnár, Á. Mastalir, Appl. Catal. A: Gen. 289 (2005) 256–266.
10] M.P.R. Spee, J. Boersma, M.D. Meijer, M.Q. Slagt, G. van Koten, J.W. Geus, J. Org.
Chem. 66 (2001).
[
[
ı−
Pd/A, while the bimetallic catalysts present electron-rich Pd and
11] W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40–51.
ı±
n+
electron-deficient Pd and Pd species (with ı close to 0 and
n close to 2). Electron-rich species can be explained due to the
formation of metallic bonds or alloys occurring at low tempera-
tures, however the formation of intermediate Pd–M–Al O surface
[12] J.G. Chen, S.-T. Qi, M.P. Humbert, C.A. Menning, Y.-X. Zhu, Acta Phys.-Chim. Sin.
6 (4) (2010) 869–876.
2
[
[
13] H. Lindlar, R. Dubuis, Org. Synth. 46 (1966) 89–92.
14] C.R. Lederhos, J.M. Badano, M.E. Quiroga, P.C. L’Argentière, Coloma-Pascual sF
F., Quim. Nova 33 (2010) 816–820.
[15] C.R. Lederhos, M.J. Maccarrone, J.M. Badano, F. Coloma-Pascual, J.C. Yori, M.E.
Quiroga, Appl. Catal. A: Gen. 396 (2011) 170–176.
2
3
species cannot be discarded.
Activity results indicate that higher throughput of product are
obtained for WPd/A (firstly), PdNi/A (secondly) and Pd/A (thirdly)
than with commercial Lindlar catalyst. All the catalysts are active in
the range of temperatures studied, 273–323 K, even at the lowest
temperature. The selectivities remained approximately constant
with temperature, besides, in all the cases the (Z)-alkene stereoiso-
mer is obtained as the main product with a very high selectivity
comparable to that obtained with the commercial Lindlar catalyst.
The optimum reaction temperature is 323 K as higher total conver-
sions of 3-hexyne are obtained with high selectivity to (Z)-3-hexene
[
16] N. Semagina, M. Grasemann, N. Xanthopoulos, A. Renken, L. Kiwi-Minsker, J.
Catal. 251 (2007) 213–222.
[17] C.-B. Wang, H.-K. Lin, C.-M. Ho, J. Molec. Catal. A: Chem. 180 (2002) 285–291.
[
[
[
18] S. Hu, Y. Chen, J. Chin. Chem. Eng. 29 (1998) 387–396.
19] P.C. L’Argentière, N.S. Fígoli, Ind. Eng. Chem. Res. 36 (1997) 2543–2546.
20] A.M. Sica, C.E. Gigola, Appl. Catal. 239 (2003) 121–139.
[21] S. Huang, C. Zhang, H. He, Catal. Today 139 (2008) 15–23.
[
[
22] C. Martín, G. Solana, P. Malet, V. Rives, Catal. Today 78 (2003) 365–376.
23] S. Chan, I. Wachs, L. Murrell, L. Wang, K. Hall, J. Phys. Chem. 88 (1984)
5
831–5835.
[24] E. Heracleous, A.F. Lee, K. Wilson, A.A. Lemonidou, J. Catal. 231 (2005) 159–
71.
25] R.M. Navarro, B. Pawelwc, J.M. Trejo, R. Mariscal, J.L.G. Fierro, J. Catal. 189 (2000)
84–194.
[26] G.M. Tonetto, D.E. Damiani, J. Mol. Catal. A Chem. 202 (2003) 289–292.
1
[
(
≥93%). The higher activity of the bimetallic catalyst is related to an
1
electronic effect originated by the superficial electron-rich species.
However, the influence of geometrical effects and/or mixed sites
cannot be neglected.
[
27] V. Ferrer, A. Moronta, J. Sánchez, R. Solano, S. Bernal, D. Finol, Catal. Today 107
2005) 487–492.
28] A.B. Gaspar, L.C. Dieguez, Appl. Catal. A: Gen. 201 (2000) 241–251.
(
[
Nickel and tungsten proved to be good promoters for the palla-
dium monometallic catalyst as it caused an increment in the activity
without modifying the high selectivity to (Z)-3-hexene character-
istic of Pd monometallic catalysts. Besides, the prepared catalysts
present the advantages of low Pd loading and low cost of nickel or
tungsten precursors, which leads to cheaper and highly active and
selective catalysts.
[29] F. Cardenas-Lizana, S. Gómez-Quero, M.A. Keane, Appl. Catal. A: Gen. 334 (2008)
199–206.
[
30] B.W. Hoffer, A. Dick van Langeveld, J.P. Janssens, R.L.C. Bonne, C.M. Lok, J.A.
Moulijn, J. Catal. 192 (2000) 432–440.
[31] P. Kim, H. Kim, J.B. Joo, W. Kim, I.K. Song, J. Yi, J. Molec. Catal. A: Chem. 256
(2006) 178–183.
[
[
32] G. Li, L. Hu, J.M. Hill, Appl. Catal. A: Gen. 301 (2006) 16–24.
33] Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Catal. A: Gen. 253 (2003)
381–387.
[
34] J.A.C. Dias, J.M. Assaf, Appl. Catal. A: Gen. 334 (2008) 243–250.
[
35] X. Li, A. Wang, S. Zhang, Y. Chen, Y. Hu, Appl. Catal. A: Gen. 316 (2007) 134–
Acknowledgements
141.
[
36] NIST X-ray Photoelectron Spectroscopy Database NIST Standard Reference
Database 20, Version 3.5 (Web Version), National Institute of Standards and
Technology, USA, 2007.
The experimental assistance of C.A. Mázzaro and the finan-
cial support provided by UNL, CONICET and ANPCyT are greatly
acknowledged.
[
[
[
37] N.H.H. Abu Bakar, M.M. Bettahar, M. Abu Bakar, S. Monteverdi, J. Ismail, J. Mol.
Catal. A: Chem. 333 (2010) 11–19.
38] F.U. Hillebrecht, J.C. Fuggle, P.A. Bennett, Z. Zolnierek, Phys. Rev. B 27 (1983)
2
179–2193.
1999) 205–218.
References
(
[
[
1] R.L. Augustine, Heterogeneous Catalysis for the Synthetic Chemist, Marcel
Dekker Inc., New York, 1996 (Chapter 3–16) pp. 41–43, pp. 387–601.
2] Á. Mastalir, Z. Király, Á. Patzkó, I. Dékány, P. L’Argentière, Carbon 46 (2008)
[40] J. Choi, N.M. Yoon, Tetrahedron Lett. 37 (7) (1996) 1057–1060.
[41] G. Carturan, G. Facchin, G. Cocco, S. Enzo, G. Navazio, J. Catal. 76 (1982) 405–417.
[42] B. Coq, F. Figueras, J. Mol. Catal. A: Chem. 173 (2001) 117–134.
[43] J.G. Ulan, W.F. Maier, D.A. Smith, J. Org. Chem. 52 (1987) 3132–3142.
[44] M.J. Maccarrone, G.C. Torres, C. Lederhos, J.M. Badano, C.R. Vera, M. Quiroga, J.C.
[45] M.J. Maccarrone, G.C. Torres, C. Lederhos, J.M. Badano, C.R. Vera, M. Quiroga,
953-307-355-7 (Chapter).
[46] J. Álvarez-Rodríguez, I. Rodríguez-Ramos, A. Guerrero-Ruiz, A. Arcoya, Appl.
Catal. A: Gen. 401 (2011) 56–64.
[47] D.F. Shriver, P.W. Atkins, C.H. Langford, Inorganic Chemistry, 3rd ed., W.H.
Freeman and Co., New York, 1994, p. 258.
1
631–1637.
[
[
[
3] A. Jung, A. Jess, T. Schubert, W. Schütz, Appl. Catal. A: Gen. 362 (2009) 95–105.
4] J.A. Anderson, J. Mellor, R.P.K. Wells, J. Catal. 261 (2009) 208–216.
5] G. Alvez-Manoli, T.J. Pinnavaia, Z. Zhang, D.K. Lee, K. Marín-Astorga, P.
Rodriguez, F. Imbert, P. Reyes, N. Marín-Astorga, Appl. Catal. A: Gen. 387 (2010)
2
6–34.
6] D.A. Liprandi, E.A. Cagnola, M.E. Quiroga, P.C. L’Argentière, Catal. Lett. 128
2009) 423–433.
7] D.A. Liprandi, E.A. Cagnola, J.F. Paredes, J.M. Badano, M.E. Quiroga, Catal. Lett.
42 (2012) 231–237.
8] N. Marín-Astorga, G. Pecchi, J.L.G. Fierro, P. Reyes, Catal. Lett. 91 (2003)
15–121.
[
[
[
(
1
[48] C. Betti, J. Badano, M.J. Maccarrone, V. Mazzieri, C. Vera, M. Quiroga, Appl. Catal.
1