RSC Advances
Paper
support. Furthermore, due to the small particle size, there was
almost no reduction of the BET surface area. Similar Ru/SiO2
SBA-15 materials were obtained by the reactive deposition with
3 P. Kluson, J. Had, Z. Belohlav and L. Cerveny, Appl. Catal., A,
1997, 149, 331–339.
4 H. Liu, T. Jiang, B. X. Han, S. Liang, W. Wang, T. Wu and
G. Y. Yang, Green Chem., 2011, 13, 1106–1109.
5 P. Gallezot, Catal. Today, 2007, 121, 76–91.
6 P. Kluson, L. Cerveny and J. Had, Catal. Lett., 1994, 23, 299–
312.
ꢀ
H2 at 150 C. In this case, however, a much larger Ru load was
obtained (6.0% mol) for the same initial metal concentrations
and the reaction proceeded to completion. Particles in this case
were slightly larger and turned into rods. On the other hand, the
reactive deposition of RuCl3$xH2O in EtOH–CO2 was successful
7 A. I. Carrillo, L. C. Schmidt, M. L. Marin and J. C. Scaiano,
Catal. Sci. Technol., 2014, 4, 435–440.
ꢀ
at very mild conditions (150–200 C). This is a very promising
result because metal chlorides are cheaper precursors, less toxic
and easier to handle than organometallic compounds. In this
case, EtOH was the cosolvent that allowed the dissolution of the
RuCl3$xH2O salt in scCO2 and, at the same time, the reducing
agent that yielded Ru nanoparticles. Although the precursor
8 J. Alvarez-Rodriguez, I. Rodriguez-Ramos, A. Guerrero-Ruiz,
E. Gallegos-Suarez and A. Arcoya, Chem. Eng. J., 2012, 204,
169–178.
9 T. Wu, P. Zhang, J. Ma, H. Fan, W. Wang, T. Jiang and
B. X. Han, Chin. J. Catal., 2013, 34, 167–175.
decomposition was complete only at 200 ꢀC, loads between 0.8 10 S. D. Miao, Z. Liu, B. X. Han, J. Huang, Z. Y. Sun, J. L. Zhang
and 7.4% mol Ru were obtained by varying the precursor
and T. Jiang, Angew. Chem., Int. Ed., 2006, 45, 266–269.
concentration and temperature. Ru nanoparticles were homo- 11 R. J. White, R. Luque, V. L. Budarin, J. H. Clark and
geneously distributed throughout the support particularly at
D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481–494.
150 ꢀC. At 200 ꢀC and low precursor to support molar ratio, 12 Y. Zhang and C. Erkey, J. Supercrit. Fluids, 2006, 38, 252–267.
particles appeared connected within the mesopores forming 13 C. Erkey, J. Supercrit. Fluids, 2009, 47, 517–522.
¨
nanowires. Further washing of the samples is required.
The Ru/SiO2 SBA-15 composite materials prepared in scCO2
14 X. Zang, S. Heinonen and E. Levanen, RSC Adv., 2014, 4,
61137–61152.
were tested as heterogeneous catalysts in the partial hydroge- 15 M. J. Tenorio, C. Pando, J. A. R. Renuncio, J. G. Stevens,
nation reactions of benzene and limonene. In the hydrogena-
tion of benzene in a ZnSO4 aqueous solution at 150 ꢀC, the
R. A. Bourne, M. Poliakoff and A. Cabanas, J. Supercrit.
Fluids, 2012, 69, 21–28.
´
catalyst prepared by H2-reduction in scCO2 was more selective 16 Y. Sanchez-Vicente, S. L. C. Pando, M. J. Torralvo,
˜
to the intermediate product cyclohexene than a commercial
Ru/C catalyst. Similarly, in the hydrogenation of limonene in
C. E. Snape, T. C. Drage and A. Cabanas, Chem. Eng. J.,
2015, 264, 886–898.
scCO2 at 50 ꢀC, the same catalyst gave the best yields to the 17 D. L. Tomasko, H. B. Li, D. H. Liu, X. M. Han, M. J. Wingert,
intermediate product p-menthene, with values close to 70% in
15 minutes. These values are comparable or better than others
L. J. Lee and K. W. Koelling, Ind. Eng. Chem. Res., 2003, 42,
6431–6456.
previously reported in the literature. On the other hand, the 18 K. S. Morley, P. C. Marr, P. W. Webb, A. R. Berry, F. J. Allison,
Ru/SiO2 catalyst prepared by impregnation gave the highest
conversion at 15 min but no selectivity to p-menthene, probably
due to the smaller particle size.
G. Moldovan, P. D. Brown and S. M. Howdle, J. Mater. Chem.,
2002, 12, 1898–1905.
19 J. J. Watkins and T. J. McCarthy, Chem. Mater., 1995, 7, 1991–
Supercritical CO2 is a green solvent that allows the prepara-
1994.
tion of efficient selective heterogeneous catalysts and that it can 20 J. J. Watkins, J. M. Blackburn and T. J. McCarthy, Chem.
be also used as the solvent to perform the hydrogenation
reaction.
Mater., 1999, 11, 213–215.
21 E. Kondoh, Jpn. J. Appl. Phys., Part 1, 2005, 44, 5799–5802.
22 A. O'Neil and J. Watkins, Chem. Mater., 2006, 18, 5652–5658.
23 Y. Zhang, D. Kang, M. Aindow and C. Erkey, J. Phys. Chem. B,
2005, 109, 2617–2624.
24 Y. Lin, X. Cui, C. H. Yen and C. M. Wai, Langmuir, 2005, 21,
11474–11479.
Acknowledgements
We gratefully acknowledge the nancial support of the Spanish
Ministry of Economy and Competitiveness (MINECO), research
25 C. F. Karanikas and J. Watkins, Microelectron. Eng., 2010, 87,
566–572.
`
projects CTQ2013-41781-P and MAT2013-44964 R. J. Morere
thanks MINECO for his support through a predoctoral grant.
26 E. Kondoh, Jpn. J. Appl. Phys., Part 1, 2004, 43, 3928–3933.
27 X.-R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wang and
C. M. Wai, J. Mater. Chem., 2004, 14, 908–913.
28 Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao and G. An, J. Colloid
Interface Sci., 2006, 304, 323–328.
´
We thank Dr Y. Sanchez-Vicente and Dr N. Kayali for helpful
discussion. We also thank “ICTS-Centro Nacional de Micro-
´
´
scopıa Electronica”, “Centro de Rayos X” and “Centro de
´
Espectrometrıa de Masas” at UCM for technical assistance.
29 Y. J. Zhao, J. L. Zhang, J. L. Song, J. S. Li, J. L. Liu, T. B. Wu,
P. Zhang and B. X. Han, Green Chem., 2011, 13, 2078–2082.
30 Z. Y. Sun, L. Fu, Z. M. Liu, B. X. Han, Y. Q. Liu and J. M. Du, J.
Nanosci. Nanotechnol., 2006, 6, 691–697.
Notes and references
1 P. Kluson and L. Cerveny, Appl. Catal., A, 1995, 128, 13–31.
2 P. Kluson and L. Cerveny, J. Mol. Catal. A: Chem., 1996, 108, 31 Z. Y. Sun, Z. M. Liu, B. X. Han, Y. Wang, J. M. Du, Z. L. Xie
107–112.
and G. J. Han, Adv. Mater., 2005, 17, 928–932.
38890 | RSC Adv., 2015, 5, 38880–38891
This journal is © The Royal Society of Chemistry 2015