Y. Wang et al. / Journal of Catalysis 266 (2009) 258–267
267
direction), and then make the molecules suffer more diffusion lim-
References
itations. This may correspond to the lowest EDA conversion as well
as the lowest selectivity to bulky product of TEDA on this TS-1 with a
large crystal size. It is thus favorable to reduce the crystal size and
then increase the external surface area to make the primary conden-
sation of EDA to PIP and the secondary condensation of PIP to TEDA
both moving smoothly. The average molecular sizes are 0.31 ꢁ 0.54
nm for EDA, 0.27 ꢁ 0.48 nm for PIP and 0.46 ꢁ 0.48 ꢁ 0.48 nm for
TEDA as given by Gaussian2003 software. Therefore, we assume
that the first intermolecular condensation of EDA to PIP takes place
mainly inside the medium pores of the MFI structure. With respect
to secondary condensation of PIP with EDA to TEDA, since the TEDA
molecules with a polycyclic shape are relatively rigid, the 10-MR
channels of TS-1 would propose mass transfer limitations inside
for these molecules. Moreover, TEDA is formed via a bulky interme-
diate of aminoethylpiperazine (0.27 ꢁ 0.48 ꢁ 0.7 nm), which is
hardly accommodated inside the pores of the MFI structure. Thus,
the condensation of PIP with EDA is considered to take place mainly
on the acid sites near the pore entrance and on the external surface.
[1] Ullmann’s Encyclopedia of Industrial Chemistry, vol. A2, VCH, 1998, p. 16.
[2] A. Belhekar, T.K. Das, K. Chaudhari, S.G. Hegde, A.J. Chandwadka, Stud. Surf. Sci.
Catal. 113 (1998) 195.
[3] H.G. Bosche, K.Baer, K. Schneider, DE Patent 2, 442, 929, 1976.
[4] I. Hudea, M. Biemel Werner, R. Czifra, RO Patent 85, 563, 1984.
[5] G. Engemann, G. Spielberger, US Patent 3, 080, 371, 1963.
[6] N. Srinivas, D. Venu Gopal, B. Srinivas, S.J. Kulkarni, M. Subrahmanyam,
Micropor. Mesopor. Mater. 51 (2002) 43.
[7] Y. Bhat, J. Das, S. Ali, B.D. Bhatt, A.B. Halgeri, Appl. Catal. A 148 (1996) L1.
[8] R. Anand, B.S. Rao, Catal. Commun. 3 (2002) 479.
[9] M. Selvaraj, B.R. Min, Y.G. Shul, T.G. Lee, Micropor. Mesopor. Mater. 74 (2004)
157.
[10] M. Frauenkron, B. Stein, US Patent 6, 562, 971 B2, 2003.
[11] G. Bellussi, M.S. Rigguto, Stud. Surf. Sci. Catal. 85 (1994) 177.
[12] B. Notari, Adv. Catal. 41 (1996) 253.
[13] H. Ichihashi, Catal. Catal. (Shyokubai) 47 (2005) 190.
[14] A. Thangaraj, S. Sivasanker, P. Ratnasamy, J. Catal. 137 (1992) 252.
[15] D. Srinivas, R. Srivastava, P. Ratnasamy, Catal. Today 96 (2004) 127.
[16] R.S. Drago, S.C. Dias, J.M. McGilvray, A.L.M.L. Mateus, J. Phys. Chem. B 102
(1998) 1508.
[17] G. Deo, A.M. Turek, I.E. Wachs, Zeolites 13 (1993) 365.
[18] A. Auroux, A. Gervasini, E. Jorda, A. Tuel, Stud. Surf. Sci. Catal. 84 (1994)
653.
[19] R. Srivastava, D. Srinivas, P. Ratnasamy, Catal. Lett. 91 (2003) 133.
[20] J.Q. Zhuang, Z.M. Yan, X.M. Liu, X.C. Liu, X.W. Han, X.H. Bao, U. Mueller, Catal.
Lett. 83 (2002) 87.
5. Conclusions
[21] T. Tatsumi, K.A. Koyano, Y. Shimizu, Appl. Catal. A 200 (2000) 125.
[22] A. Corma, U. Diaz, E.M. Domine, V. Fornés, J. Am. Chem. Soc. 122 (2000)
2804.
[23] P. Wu, T. Komatsu, T. Yashima, J. Phys. Chem. 100 (1996) 10316.
[24] P. Wu, T. Komatsu, T. Yashima, J. Catal. 168 (1997) 400.
[25] M.A. Camblor, A. Corma, A. Martínez, J. Pérez-Pariente, J. Chem. Soc. Chem.
Commun. (1992) 589.
[26] P. Wu, T. Tatsumi, T. Komatsu, T. Yashima, J. Phys. Chem. B 105 (2001) 2897.
[27] P. Wu, T. Tatsumi, Catal. Surv. Asia 8 (2004) 137.
[28] A. Tuel, Zeolites 16 (1996) 108.
[29] X.W. Guo, G. Li, X.F. Zhang, X.S. Wang, Stud. Surf. Sci. Catal. 112 (1997)
499.
[30] P.R. Reddy, M. Subrahmanyam, S.J. Kulkarni, Catal. Lett. 54 (1998) 95.
[31] E. Astorino, J.B. Peri, R.J. Willey, G. Busca, J. Catal. 157 (1995) 482.
[32] D. Scarano, A. Zecchina, S. Bordiga, F. Geobaldo, G. Spoto, G. Petrini, G. Leofanti,
M. Padovan, G. Tozzola, J. Chem. Soc. Faraday Trans. 89 (1993) 412.
[33] W. Lin, H. Frei, J. Am. Chem. Soc. 124 (2002) 9292.
[34] R. Buzzoni, S. Bordiga, G. Ricchiardi, C. Lamberti, A. Zecchina, G. Bellussi,
Langmuir 12 (1996) 930.
TS-1 is superior to other titanosilicates in the intermolecular
condensation of EDA to TEDA, giving EDA conversion to PIP and
TEDA as high as 95% and a total selectivity of ca. 85%, when synthe-
sized to have small a crystal size (0.3–0.4 lm) as well as a high Ti
content corresponding to Si/Ti ratio of 30. The incorporation of Ti
ions into the framework generates both acidic hydroxyl groups
and Lewis acid sites in TS-1. The acidic hydroxyl groups with a
moderate acidity is originated from the internal Si–OH groups
adjacent to the ‘‘open” Ti sites, while the Lewis acidity is due to
the framework Ti ions. It is the internal silanols in TS-1 that con-
tribute to the condensation of EDA rather than its Lewis acid sites.
A small crystal size of TS-1 benefits more the secondary condensa-
tion of PIP to TEDA, a bulky reaction which requires open reaction
spaces such as pore entrance and external surface, compared to the
primary condensation of EDA to PIP.
[35] C. Pazé, S. Bordiga, C. Lamberti, M. Salvalaggio, A. Zecchina, G. Bellussi, J. Phys.
Chem. B 101 (1997) 4740.
[36] F. Bonino, A. Damin, S. Bordiga, C. Lamberti, A. Zecchina, Langmuir 19 (2003)
2155.
Acknowledgments
[37] C. Ngamcharussrivichai, P. Wu, T. Tatsumi, J. Catal. 235 (2005) 139.
[38] C. Lamberti, S. Bordiga, D. Arduuino, A. Zecchina, F. Geobaldo, G. Spano, F.
Genoni, G. Petrini, A. Carati, F. Villain, G. Vlaic, J. Phys. Chem. B 102 (1998)
6382.
[39] G. Yang, X.J. Lan, J.Q. Zhuang, D. Ma, L.J. Zhou, X.C. Liu, X.W. Han, X.H. Bao, Appl.
Catal. A 337 (2008) 58.
[40] L. Chen, L. Norena, J. Navarrete, J. Wang, Mater. Chem. Phys. 97 (2006) 236.
[41] J. Anderson, C. Fergusson, I. Rodriguez-Ramos, A. Gueerero-Ruiz, J. Catal. 192
(2000) 344.
We gratefully acknowledge NSFC of China (20673038,
20873043), Science and Technology Commission of Shanghai
Municipality (09XD1401500, 08JC1408700, 07QA14017), 973
Program (2006CB202508), 863 Program (2007AA03Z34), and
Shanghai Leading Academic Discipline Project (B409). Y.W. thanks
the PhD Program Scholarship Fund of ECNU 2008.
[42] C.B. Khouw, M.E. Davis, J. Catal. 151 (1995) 77.
[43] J.W. Ward, Am. Chem. Soc. Monogr. 171 (1979) 118.
[44] E. Dumitriu, V. Hulea, S. Kaliaguine, M.M. Huang, Appl. Catal. A 135 (1996)
57.
Appendix A. Supplementary material
[45] H. Bludau, H.G. Karge, W. Niessen, Micropor. Mesopor. Mater. 22 (1998)
297.
Supplementary data associated with this article can be found, in