Journal of the American Chemical Society
Article
Metathesis Polymerization: The Significance of the Anchor Group.
ACKNOWLEDGMENTS
■
J. Am. Chem. Soc. 2016, 138 (22), 6998−7004.
W.J.W. gratefully acknowledges the Arnold O. Beckman
postdoctoral fellowship for financial support. We thank Dr.
David VanderVelde for assistance with NMR experiments, Dr.
Michael Takase for assistance with X-ray crystallography, and
Dr. Mona Shagholi for assistance with HRMS. We are also
indebted to Drs. Tonia Ahmed, Adam Johns, Allegra
Liberman-Martin, Chris Marotta, and Mr. Jiaming Li for
helpful discussions and assistance with preparing this manu-
script. We thank Materia Inc. for the generous donation of Ru
metathesis catalysts. We gratefully acknowledge Dr. Jase
Gehring for assistance with preparing figures.
(16) Chang, A. B.; Lin, T.-P.; Thompson, N. B.; Luo, S.-X.;
Liberman-Martin, A. L.; Chen, H.-Y.; Lee, B.; Grubbs, R. H. Design,
Synthesis, and Self-Assembly of Polymers with Tailored Graft
Distributions. J. Am. Chem. Soc. 2017, 139 (48), 17683−17693.
(17) Leitao, E. M.; Piers, W. E.; Parvez, M. A Thermally Robust
Ruthenium Phosphonium Alkylidene Catalyst the Effect of More
Bulky N-Heterocyclic Carbene Ligands on Catalyst Performance in
Olefin Metathesis Reactions. Can. J. Chem. 2013, 91 (10), 935−942.
(
18) Perrin, C. L.; Dwyer, T. J. Application of Two-Dimensional
NMR to Kinetics of Chemical Exchange. Chem. Rev. 1990, 90 (6),
35−967.
19) Kitamoto, Y.; Kobayashi, F.; Suzuki, T.; Miyata, Y.; Kita, H.;
9
(
Funaki, K.; Oi, S. Investigation of the Lewis Acidic Behaviour of an
Oxygen-Bridged Planarized Triphenylborane toward Amines and the
Properties of Their Lewis Acid-Base Adducts. Dalton Trans 2019, 48
REFERENCES
■
(
(
6), 2118−2127.
(
20) Hong, S. H.; Wenzel, A. G.; Salguero, T. T.; Day, M. W.;
2) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
Grubbs, R. H. Decomposition of Ruthenium Olefin Metathesis
Catalysts. J. Am. Chem. Soc. 2007, 129 (25), 7961−7968.
(21) Bailey, G. A.; Foscato, M.; Higman, C. S.; Day, C. S.; Jensen, V.
R.; Fogg, D. E. Bimolecular Coupling as a Vector for Decomposition
of Fast-Initiating Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2018,
140 (22), 6931−6944.
(22) Macnaughtan, M. L.; Gary, J. B.; Gerlach, D. L.; Johnson, M. J.
A.; Kampf, J. W. Cross-Metathesis of Vinyl Halides. Scope and
Limitations of Ruthenium-Based Catalysts. Organometallics 2009, 28
(9), 2880−2887.
(23) Benoit, R. L.; Frechette, M.; Lefebvre, D. 2,6-Di- Tert
́
-Butylpyridine: An Unusually Weak Base in Dimethylsulfoxide. Can.
J. Chem. 1988, 66 (5), 1159−1162.
(
Activity of a New Generation of Ruthenium-Based Olefin Metathesis
Catalysts Coordinated with 1,3-Dimesityl-4,5-Dihydroimidazol-2-
Ylidene Ligands. Org. Lett. 1999, 1 (6), 953−956.
(
3) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H.
Efficient and Recyclable Monomeric and Dendritic Ru-Based
Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122 (34), 8168−8179.
(
Reactions of a Phosphine-Free Dihydroimidazole Carbene Ruthenium
Complex. Tetrahedron Lett. 2000, 41 (51), 9973−9976.
(
4) Gessler, S.; Randl, S.; Blechert, S. Synthesis and Metathesis
5) Endo, K.; Grubbs, R. H. Chelated Ruthenium Catalysts for Z-
Selective Olefin Metathesis. J. Am. Chem. Soc. 2011, 133 (22), 8525−
527.
6) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H.
(
24) Brown, H. C.; Kanner, B. 2,6-Di-ButylpyridineAn Unusual
8
(
Pyridine Base. J. Am. Chem. Soc. 1953, 75 (15), 3865−3865.
25) Banyai, I. Dynamic NMR for Coordination Chemistry. New J.
Chem. 2018, 42 (10), 7569−7581.
26) Gilliom, L. R.; Grubbs, R. H. Titanacyclobutanes Derived from
(
́
Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis. J.
Am. Chem. Soc. 2012, 134 (1), 693−699.
(
for the Synthesis of New Ruthenium Olefin Metathesis Catalysts.
Organometallics 2001, 20 (25), 5314−5318.
(
Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst.
Angew. Chem., Int. Ed. 2003, 42 (15), 1743−1746.
(
7) Sanford, M. S.; Love, J. A.; Grubbs, R. H. A Versatile Precursor
Strained, Cyclic Olefins: The Living Polymerization of Norbornene. J.
Am. Chem. Soc. 1986, 108 (4), 733−742.
(27) Tallarico, J. A.; Bonitatebus, P. J.; Snapper, M. L. Ring-Opening
8) Choi, T.-L.; Grubbs, R. H. Controlled Living Ring-Opening-
Metathesis. A Ruthenium Catalyst Caught in the Act. J. Am. Chem.
Soc. 1997, 119 (30), 7157−7158.
(28) Anderson, D. R.; Hickstein, D. D.; O’Leary, D. J.; Grubbs, R. H.
Model Compounds of Ruthenium-Alkene Intermediates in Olefin
accessed May 9, 2019).
10) Sanford, M. S.; Love, J. A.; Grubbs, R. H. Mechanism and
Activity of Ruthenium Olefin Metathesis Catalysts. J. Am. Chem. Soc.
001, 123 (27), 6543−6554.
11) Slugovc, C.; Demel, S.; Riegler, S.; Hobisch, J.; Stelzer, F. The
Metathesis Reactions. J. Am. Chem. Soc. 2006, 128 (26), 8386−8387.
(29) Stewart, I. C.; Benitez, D.; O’Leary, D. J.; Tkatchouk, E.; Day,
(
M. W.; Goddard, W. A.; Grubbs, R. H. Conformations of N-
Heterocyclic Carbene Ligands in Ruthenium Complexes Relevant to
Olefin Metathesis. J. Am. Chem. Soc. 2009, 131 (5), 1931−1938.
(
2
(
(30) Ulman, M.; Grubbs, R. H. Relative Reaction Rates of Olefin
Substrates with Ruthenium(II) Carbene Metathesis Initiators1.
Resting State Makes the Difference: The Influence of the Anchor
Group in the ROMP of Norbornene Derivatives. Macromol. Rapid
Commun. 2004, 25 (3), 475−480.
Organometallics 1998, 17 (12), 2484−2489.
(
31) Adlhart, C.; Hinderling, C.; Baumann, H.; Chen, P.
Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene
Complexes Using Electrospray Ionization Tandem Mass Spectrom-
etry. J. Am. Chem. Soc. 2000, 122 (34), 8204−8214.
(
12) Walsh, D. J.; Lau, S. H.; Hyatt, M. G.; Guironnet, D. Kinetic
Study of Living Ring-Opening Metathesis Polymerization with Third-
Generation Grubbs Catalysts. J. Am. Chem. Soc. 2017, 139 (39),
(32) Nelson, D. J.; Percy, J. M. The Influence of Structure on
1
(
3644−13647.
Reactivity in Alkene Metathesis. Advances in Physical Organic
Chemistry; Elsevier, 2014; Vol. 48, pp 81−188.
13) Trzaskowski, B.; Grela, K. Structural and Mechanistic Basis of
the Fast Metathesis Initiation by a Six-Coordinated Ruthenium
Catalyst. Organometallics 2013, 32 (13), 3625−3630.
(
E.; Schanz, H.-J. Improved Molecular Weight Control in Ring-
Opening Metathesis Polymerization (ROMP) Reactions with Ru-
Based Olefin Metathesis Catalysts Using N Donors and Acid: A
Kinetic and Mechanistic Investigation. Chem. - Eur. J. 2009, 15 (45),
(33) Thiel, V.; Hendann, M.; Wannowius, K.-J.; Plenio, H. On the
Mechanism of the Initiation Reaction in Grubbs-Hoveyda Complexes.
J. Am. Chem. Soc. 2012, 134 (2), 1104−1114.
(34) Forcina, V.; Garcia-Dominguez, A.; Lloyd-Jones, G. C. Kinetics
of Initiation of the Third Generation Grubbs Metathesis Catalyst:
14) Dunbar, M.; Balof, S.; LaBeaud, L.; Yu, B.; Lowe, A.; Valente,
1
2435−12446.
15) Radzinski, S. C.; Foster, J. C.; Chapleski, R. C.; Troya, D.;
Matson, J. B. Bottlebrush Polymer Synthesis by Ring-Opening
(
(35) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms, 2nd
ed.; McGraw-Hill, 2002.
L
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX