M. Adib et al. / Tetrahedron Letters 45 (2004) 1803–1805
1805
8. Djerrari, B.; Essassi, E. M.; Fifani, J.; Garrigues, B.
Comptes Rendus Chimie 2002, 5, 177.
9. Mellor, J. M.; Merriman, G. D.; Rataj, H.; Reid, G.
Tetrahedron Lett. 1996, 37, 2615.
10. Yavari, I.; Adib, M.; Sayahi, M. H. J. Chem. Soc., Perkin
Trans. 1 2002, 21, 2343.
11. Yavari, I.; Adib, M.; Jahani-Moghaddam, F.; Bijanzadeh,
H. R. Tetrahedron 2002, 58, 6901.
were mixed all at once, 9aH-quinolizine 10 and its 4H
isomer 1117 (Scheme 3) were formed under the reaction
conditions whilst phenyl isocyanate was recovered
unchanged. Consequently, the isolated product 4 is
formed from the initial attack of the pyridine on the
acetylenic ester.
In summary, the present method carries the advantage
that, not only is the reaction performed under neutral
conditions, but the substances can be mixed without any
activation or modification. The simplicity of the present
procedure makes it an interesting alternative to other
approaches. The procedure described here provides an
acceptable one-pot method for the preparation of
functionalized 2-oxo-1,9a-dihydro-2H-pyrido[1,2-a]pyr-
imidines.
12. Yavari, I.; Adib, M.; Sayahi, M. H. Tetrahedron Lett.
2002, 43, 2927.
13. Yavari, I.; Adib, M.; Hojabri, L. Tetrahedron 2002, 58,
6895.
14. Yavari, I.; Adib, M.; Sayahi, M. H. J. Chem. Soc., Perkin
Trans. 1 2002, 13, 1517.
15. The procedure for the preparation of dimethyl 2-oxo-1-
phenyl-1,9a-dihydro-2H-pyrido[1,2-a]pyrimidine 3,4-dicarb-
oxylate 4a is described as an example. To a magnetically
stirred solution of phenyl isocyanate (0.119 g, 1 mmol) and
pyridine (0.079 g, 1 mmol) in dry CH2Cl2 (5 mL) was
added dropwise a mixture of dimethyl acetylenedicarb-
oxylate (0.142 g, 1 mmol) in CH2Cl2 (2 mL) at )5 °C over
10 min. The reaction mixture was allowed to warm to
room temperature and stirred for 2 h. The solvent was
removed under reduced pressure and the residue was
crystallized from 2:1 hexane–ethyl acetate. The product 4a
was obtained as yellow crystals, mp 117–119 °C, 0.33 g,
yield 98%. IR (KBr) (mmax/cmꢀ1): 1739, 1695, 1668, 1525,
1255. MS, m=z (%): 340 (Mþ, 10). Anal. Calcd for
C18H16N2O5 (340.34): C, 63.5; H, 4.7; N, 8.2. Found: C,
Acknowledgements
This research was supported by the Research Council of
the University of Tehran as a research project (514/4/
626).
References and notes
1
63.4; H, 4.8; N, 8.2. H NMR (500 MHz, CDCl3): d 3.82
1. Laszlo, P. Organic Reactions: Simplicity and Logic; Wiley:
New York, 1995.
2. Swinbourne, J. F.; Hunt, H. J.; Klinkert, G. Adv.
Heterocycl. Chem. 1987, 23, 103.
and 3.97 (6H, 2s, 2OCH3), 5.12 (1H, dd, J 10.1 Hz and J
3.1 Hz, CH), 5.39 (1H, dd, J 6.9 Hz and J 6.7 Hz, CH),
6.07 (1H, dd, J 8.3 Hz and J 7.9 Hz, CH), 6.15 (1H, dd, J
3.1 Hz and J 1.9 Hz, N–CH–N), 6.42 (1H, d, J 7.6 Hz, N–
CH@CH), 7.11 (2H, d, J 7.5 Hz, ortho CH), 7.27 (1H, dt,
J 2.4 Hz and J 7.1 Hz, para CH), 7.33 (2H, t, J 7.0 Hz,
meta CH). 13C NMR (125 MHz, CDCl3): d 52.23 and
53.62 (2OCH3), 69.57 (N–CH–N), 104.39 (N–CH@CH),
105.09 (N–C@C), 115.75, 123.45, 123.71 and 127.87
(4CH), 128.65 (ortho CH), 129.67 (meta CH), 134.77 (ipso
C), 149.22 (N–C@C), 158.89, 162.90 and 164.84 (3C@O).
16. Friebolin, H. Basic One- and Two-Dimensional NMR
Spectroscopy, 3rd ed.; Wiley-VCH: Weinheim, 1998.
3. Hermecz, I.; Vasvari-Debreczy, L.; Matyus, P. In Com-
prehensive Heterocyclic Chemistry; Katritzky, A. R., Rees,
C. W., Scriven, E. V. F., Eds.; Pergamon: London, 1996;
Chapter 8.23, pp 563–595, and references cited therein.
4. Colpaert, F. C. Nat. Rev. Drug Discovery 2003, 2, 315.
5. Leoncini, G.; Signorello, M. G.; Roma, G.; Di Braccio,
M. Biochem. Pharmacol. 1997, 53, 1667.
6. Bogdanov, V. S.; Cherkasova, K. L.; Dorokhov, V. A.;
Shishkin, O. V.; Struchkov, Y. T. Mendeleev Commun.
1995, 5, 106.
17. (a) Acheson, R. M.; Foxton, M. W.; Hands, A. R.
J. Chem. Soc. (C) 1968, 387; (b) Acheson, R. M.;
Feinberg, R. S.; Gagan, J. M. F. J. Chem. Soc. 1965, 948.
€ €
7. Gullu, M.; Uzun, S.; Yalcin, S. Tetrahedron Lett. 2003, 44,
1939.