Organic Letters
Letter
polyfunctionalized 4-aminocyclopentenones, which may serve
as a platform for the synthesis of natural products such as those
mentioned above has been developed.
Table 3. Ca(II)-Catalyzed Cyclization of 2-Furylcarbinols
3a−e with p-Iodoaniline 2a
a
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, characterization data, and 1H and 13
■
S
C
NMR spectra for all new 4-aminocyclopentenones. This
material is available free of charge via the Internet at http://
entry
R
temp (°C)
time (min)
yield (%)
1
2
3
4
5
PMP
Me
40
80
10
60
30
60
20
5a (81)
5b (80)
5c (86)
5d (75)
5e (58)
AUTHOR INFORMATION
Corresponding Authors
■
allyl
80
benzyl
100
100
Notes
CH2OTBDPS
a
Reaction conditions: 4a−e (1 equiv) and aniline 2a (1.1 equiv) in
MeNO2 (0.4 M) in the presence of Ca(NTf2)2 (5 mol %) and n-
Bu4NPF6 (5 mol %) at the indicated temperature.
The authors declare no competing financial interest.
In the next set of experiments, we focused on the reactivity of
2-furyl(phenyl)methanol substituted at the furan ring (Table
4). In most cases, we noticed that the introduction of a
ACKNOWLEDGMENTS
We thank the CNRS, IUF, the Minister
■
̀
e de l’Enseignement
Super
support of this work.
́
ieur et de la Recherche, and the LabEx CharM3At for
Table 4. Ca(II)-Catalyzed Cyclization of Substituted 2-
a
Furyl(phenyl)methanol 6a−g with p-Iodoaniline 2a
REFERENCES
■
(1) (a) Blanco-Urgoiti, J.; Anorbe, L.; Per
́
ez-Serrano, L.; Domínguez,
̃
G.; Per
́
ez-Castells, J. Chem. Soc. Rev. 2004, 33, 32. (b) Laschat, S.;
Becheanu, A.; Bell, T.; Baro, A. Synlett 2005, 2547. (c) Gibson, S. E.;
Mainolfi, N. Angew. Chem., Int. Ed. 2005, 44, 3022. (d) Shibata, T. Adv.
Synth. Catal. 2006, 348, 2328. (e) Lee, H.-W.; Kwong, F.-Y. Eur. J. Org.
Chem. 2010, 789.
(2) (a) Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429.
(b) Habermas, K. L.; Denmark, S. E.; Jones, T. K. In Organic
Reactions; Paquette, L. A., Ed.; John Wiley & Sons, Inc.: New York,
1994; Vol. 45, pp 1−158. (c) Harmata, M. Chemtracts 2004, 17, 416.
(d) Pellissier, H. Tetrahedron 2005, 61, 6479. (e) Frontier, A. J.;
Collison, C. Tetrahedron 2005, 61, 7577. (f) Tius, M. A. Eur. J. Org.
Chem. 2005, 11, 2193. (g) Nakanishi, N.; West, F. G. Curr. Opin. Drug
Discovery Dev. 2009, 12, 732. (h) Shimada, N.; Stewart, C.; Tius, M. A.
Tetrahedron 2011, 67, 5851. (i) Vaidya, T.; Eisenberg, R.; Frontier, A.
J. ChemCatChem. 2011, 3, 1531. (j) Spencer, W. T., III; Vaidya, T.;
Frontier, A. J. Eur. J. Org. Chem. 2013, 3621. (k) Tius, M. A. Chem. Soc.
Rev. 2014, 43, 2979. (l) Wenz, D. R.; Read de Alaniz, J. Eur. J. Org.
Chem. 2014, DOI: 10.1002/ejoc.201402825.
entry
R1
R2
R3
temp (°C)
time (min)
yield (%)
1
2
3
4
5
6
7
Me
Ph
Br
H
H
H
H
80
90
90
90
80
80
80
20
20
15
30
20
30
60
7a (97)
7b (93)
7c (93)
7d (86)
7e (87)
7f (65)
7g (−)
H
H
H
Me
Ph
Br
H
H
H
H
H
H
H
Me
a
(3) For recent examples, see: (a) Lebœuf, D.; Wright, C. M.;
Frontier, A. J. Chem.Eur. J. 2013, 19, 4835. (b) Lebœuf, D.; Theiste,
E.; Gandon, V.; Daifuku, S. L.; Neidig, M. L.; Frontier, A. J. Chem.
Reaction conditions: 6a−g (1 equiv) and aniline 2a (1.1 equiv) in
MeNO2 (0.4 M) in the presence of Ca(NTf2)2 (5 mol %) and n-
Bu4NPF6 (5 mol %) at the indicated temperature.
Eur. J. 2013, 19, 4842. (c) Hutson, G. E.; Turkmen, Y. E.; Rawal, V. H.
̈
J. Am. Chem. Soc. 2013, 135, 4988. (d) Kwon, Y.; McDonald, R.; West,
F. G. Angew. Chem., Int. Ed. 2013, 52, 8616. (e) Flynn, B. L.; Manchala,
N.; Krenske, E. H. J. Am. Chem. Soc. 2013, 135, 9156. (f) Jolit, A.;
Vazquez-Rodriguez, S.; Yap, G. P. A.; Tius, M. A. Angew. Chem., Int.
Ed. 2013, 52, 11102. (g) Vaidya, T.; Cheng, R.; Carlsen, P. N.;
Frontier, A. J.; Eisenberg, R. Org. Lett. 2014, 16, 800. (h) Hoffmann,
substituent R1 (entries 1−3) or R2 (entries 4−6) did not
hamper the reactivity. The 4-aminocyclopentenones were
isolated in high yields (up to 97%). On the other hand,
decomposition of the substrate was observed with a methyl
group as R3 (entry 7). This outcome might be the result of the
steric hindrance, which could prevent the nucleophilic attack of
the aniline on the oxonium intermediate.
In conclusion, we have shown that the aza-Piancatelli
reaction can be catalyzed very efficiently by the easy-to-handle
Ca(NTf2)2/n-Bu4NPF6 mixture. The use of the ammonium salt
is not strictly necessary, but it significantly reduces the reaction
time and improves the yields. This catalytic system has proven
tolerant toward a broad range of substrates. Importantly, we
have also shown for the first time that various substitution
patterns at C2 and C3 of the furan ring can be used in the aza-
Piancatelli reaction. Thus, a straightforward access to
́
M.; Weibel, J.-M.; de Fremont, P.; Pale, P.; Blanc, A. Org. Lett. 2014,
16, 908. (i) Wu, Y.-K.; West, F. G. Org. Lett. 2014, 16, 2534. (j) Jolit,
A.; Walleser, P. M.; Yap, G. P. A.; Tius, M. A. Angew. Chem., Int. Ed.
2014, 53, 6180. (k) Carlsen, P. N.; Mann, T. J.; Hoveyda, A. H.;
Frontier, A. J. Angew. Chem., Int. Ed. 2014, 53, 9334. (l) Wu, Y.-K.;
Dunbar, C. R.; McDonald, R.; Ferguson, M. J.; West, F. G. J. Am.
Chem. Soc. 2014, 136, 14903. (m) William, R.; Wang, S.; Ding, F.;
Arviana, E. N.; Liu, X.-W. Angew. Chem., Int. Ed. 2014, 53, 10742.
(4) (a) Lemier
T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc.
2009, 131, 2993. (b) Cordier, P.; Aubert, C.; Malacria, M.; Lacote, E.;
̀
e, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama,
̂
Gandon, V. Angew. Chem., Int. Ed. 2009, 48, 8757. (c) Lebœuf, D.;
C
dx.doi.org/10.1021/ol5032987 | Org. Lett. XXXX, XXX, XXX−XXX