S. Takamatsu et al. / Tetrahedron Letters 42 (2001) 2325–2328
2327
H
H
6-Cl-Purine
6-Cl-Purine
H
H
H
H
O
O
TrO
AcO
H
H
H
H
J1',2' = 2.2 Hz
J1',2' = 2.3 Hz
OH
OH
7: C3'-endo
11: C3'-endo
Figure 1.
5%-hydroxyl protecting group changed the sugar
conformation8 and affected the yield of fluorination.
Although a risk of undesired deprotection during the
fluorination is present, fluorination of 11 was per-
formed by morpholinosulfur trifluoride (MOST), which
is an alternative reagent of DAST and it reacted more
mildly. Thus, treatment of the acetylated compound 11
with MOST in the presence of pyridine in
dichloromethane under reflux conditions gave a C2%-b
fluorinated compound (12)18 in 39% yield after purifica-
tion by silica gel column chromatography. In this
study, it was revealed that the size of 5%-hydroxyl
protecting group did not influence the sugar conforma-
tion and gave a similar yield of the fluorination.
References
1. (a) Marquez, V. E.; Tseng, C. K.-H.; Kelley, J. A.;
Mitsuya, H.; Broder, S.; Roth, J. S.; Driscoll, J. S.
Biochem. Pharmacol. 1987, 36, 2719–2722; (b) Marquez,
V. E.; Tseng, C. K.-H.; Mitsuya, H.; Aoki, S.; Kelley, J.
A.; Ford, Jr., H.; Roth, J. S.; Broder, S.; Johns, D. G.;
Driscoll, J. S. J. Med. Chem. 1990, 33, 978–985; (c)
Ruxrungtham, K.; Boone, E.; Ford, Jr., H.; Driscoll, J.
S.; Davey, Jr., R. T.; Lane, H. C. Antimicrob. Agents
Chemother. 1996, 40, 2369–2374 and references cited
therein; (d) Graul, A.; Silvestre, J. Drugs of the Future
1998, 23, 1176–1189 and references cited therein.
2. (a) Driscoll, J. S.; Mayers, D. L.; Bader, J. P.; Weislow,
O. S.; Johns, D. G.; Buckheit, Jr., R. W. Antivir. Chem.
Chemother. 1997, 8, 107–111; (b) Tanaka, M.; Srinivas,
R. V.; Ueno, T.; Kavlick, M. F.; Hui, F. K.; Fridland,
A.; Driscoll, J. S.; Mitsuya, H. Antimicrob. Agents
Chemother. 1997, 41, 1313–1318.
1
In fact, the H NMR spectrum shows that both 715 and
1117 have a C3%-endo conformation (Fig. 1), as indi-
cated by the rather small vicinal coupling constant
between the C1% and C2% protons (J1%,2%=2.2 Hz and 2.3
Hz). Watanabe, Pankiewicz and their co-workers
reported8a that the C3%-endo conformation favors b-
elimination by virtue of a trans diaxial configuration
between the axial hydrogen on C3% and the activated
C2%-hydroxyl group. This argument is supported by
many examples; e.g. the fluorination of N1,O3%,O5%-
tribenzylinosine (J1%,2%=2.5 Hz with 2%-O-triflate)8a and
5%-O-trityl-3%-deoxyadenosine (J1%,2%=1.1 Hz)11 with
DAST gave a poor yield.
3. Dharmendra, S.; Morgan, M. E.; Anderson, B. D.
Pharm. Res. 1997, 14, 786–792.
4. (a) Maqbool, A. S.; Driscoll, J. S.; Abushanab, E.; Kel-
ley, J. A.; Barchi, Jr., J. J.; Marquez, V. E. Nucleosides
Nucleotides Nucleic Acids 2000, 19, 1–12; (b) During the
preparation of this manuscript, a clinical trial of FddA
was suspended. US Bioscience, Inc.: West Conshohocken,
PA, Press Release, Oct. 14, 1999.
5. Maqbool, A. S.; Driscoll, J. S.; Marquez, V. E. Tetra-
hedron Lett. 1998, 39, 1657–1660.
Our 3%-deoxy-6-chloropurine nucleosides gave a moder-
ate yield of fluorination despite the C3%-endo conforma-
tion. The electron-withdrawing 6-chloropurine group
may have affected the yield in our case.
6. (a) Wysocki, R. J.; Siddiqui, M. A.; Barchi, Jr., J. J.;
Driscoll, J. S.; Marquez, V. E. Synthesis 1991, 1005–1008;
(b) Siddiqui, M. A.; Marquez, V. E.; Driscoll, J. S.;
Barchi, Jr., J. J. Tetrahedron Lett. 1994, 35, 3263–3266;
(c) Chou, T. S.; Becke, L. M.; O’Toole, J. C.; Carr, M.
A.; Parker, B. E. Tetrahedron Lett. 1996, 37, 17–20.
7. Barchi, Jr., J. J.; Marquez, V. E.; Driscoll, J. S.; Ford,
Jr., H.; Mitsuya, H.; Shirasaka, T.; Aoki, S.; Kelley, J. A.
J. Med. Chem. 1991, 34, 1647–1655.
8. (a) Pankiewicz, K. W.; Krzeminski, J.; Ciszewski, L. A.;
Ren, W.-Y.; Watanabe, K. A. J. Org. Chem. 1992, 57,
553–559; (b) Pankiewicz, K. W.; Watanabe, K. A. In
Nucleosides and Nucleotides as Antitumor and Antiviral
Agents; Chu, C. K.; Baker, D. C., Eds.; Plenum Press:
New York, 1993; pp. 55–71; (c) Pankiewicz, K. W.;
Watanabe, K. A. J. Fluor. Chem. 1993, 64, 15–36.
9. Maruyama, T.; Sato, Y.; Oto, Y.; Takahashi, Y.; Snoeck,
R.; Andrei, G.; Witvrouw, M.; De Clercq, E. Chem.
Pharm. Bull. 1996, 44, 2331–2334.
In conclusion, FddA (1) was synthesized from readily
available 6-chlorinated purine 3%-deoxynucleoside 6 by
fluorination of the C2%-b position. The electron-with-
drawing 6-chloropurine group suppresses the formation
of elimination product and isonucleoside. Conse-
quently, the yield of fluorination at the C2%-b position
of purine 3%-deoxynucleoside proceeded in moderate
yield (43%). The total yield of FddA from readily
available starting material 6 was 35%. The details of the
reaction are now under investigation in our
laboratories.
Acknowledgements
10. Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.;
Izawa, K. Chem. Pharm. Bull. 1999, 47, 966–970.
11. Herdewijn, P.; Pauwels, R.; Baba, M.; Balzarini, J.; De
Clercq, E. J. Med. Chem. 1987, 30, 2131–2137.
The authors thank Mr. Hideo Takeda and Mr.
Shigekatsu Tsuchiya of Ajinomoto Co., Inc. for their
help in this research.