10.1002/cctc.201902364
ChemCatChem
COMMUNICATION
[1]
[2]
[3]
D. Ghislieri, N. J. Turner, Topics in Catalysis 2014, 57,
284-300.
M. D. Patil, G. Grogan, A. Bommarius, H. Yun, Catalysts
2018, 8, 254.
G. A. Aleku, S. P. France, H. Man, J. Mangas-Sanchez, S.
L. Montgomery, M. Sharma, F. Leipold, S. Hussain, G.
Grogan, N. J. Turner, Nat. Chem. 2017, 9, 961-969.
M. D. Patil, G. Grogan, A. Bommarius, H. Yun, ACS Catal.
2018, 8, 10985-11015.
M. J. Abrahamson, E. Vazquez-Figueroa, N. B. Woodall,
J. C. Moore, A. S. Bommarius, Angew. Chem., Int. Ed.
2012, 51, 3969-3972.
a) M. J. Abrahamson, J. W. Wong, A. S. Bommarius, Adv.
Synth. Catal. 2013, 355, 1780-1786; b) B. R. Bommarius,
M. Schurmann, A. S. Bommarius, Chem. Commun.
(Cambridge, U. K.) 2014, 50, 14953-14955; c) L. J. Ye, H.
H. Toh, Y. Yang, J. P. Adams, R. Snajdrova, Z. Li, ACS
Catal. 2015, 5, 1119-1122; d) A. Pushpanath, E. Siirola, A.
Bornadel, D. Woodlock, U. Schell, ACS Catal. 2017, 7,
3204-3209; e) J. Lowe, A. A. Ingram, H. Groger, Bioorg.
Med. Chem. 2018, 26, 1387-1392; f) V. Tseliou, T. Knaus,
M. F. Masman, M. L. Corrado, F. G. Mutti, Nat. Commun.
2019, 10, 3717; g) S. K. Au, B. R. Bommarius, A. S.
Bommarius, ACS Catal. 2014, 4, 4021-4026; h) F. F.
Chen, G. W. Zheng, L. Liu, H. Li, Q. Chen, F. L. Li, C. X.
Li, J. H. Xu, ACS Catal. 2018, 8, 2622-2628.
Reaction conditions: 0.4-1.0 µM enzyme, 20 mM substrate, 200 µM NADH, 4M
NH4Cl/NH4OH, pH 9.6, 25 °C, 1 mL reaction volume.
To further demonstrate the improvements to the applicability of L-
AmDH to convert larger ketones, selected substrates were
converted at a 50 mL preparative scale for 24 hours with both L-
AmDH and TV/L39A. As shown in Table 4, relative conversion,
(measured after derivatization with benzoyl chloride[7a]) between
the two enzymes was in line with their relative specific activities.
Additionally, the already exquisite enantioselectivity of the L-
AmDH[5] was not impacted by the mutations, as measured after
diastereomeric derivatization[7b] [Figures S4, S5, S8]. Aggregation
occurred in all samples occurred over the course of the reaction
and likely limited overall conversion. In the future, this could be
mitigated through immobilization.
[4]
[5]
[6]
Table 4. Conversion values for preparative-scale reactions
Conversion after 24 hours
[7]
a) O. Mayol, K. Bastard, L. Beloti, A. Frese, J. P.
Turkenburg, J. L. Petit, A. Mariage, A. Debard, V. Pellouin,
A. Perret, V. de Berardinis, A. Zaparucha, G. Grogan, C.
Vergne-Vaxelaire, Nat. Catal. 2019, 2, 324-333; b) O.
Mayol, S. David, E. Darii, A. Debard, A. Mariage, V.
Pellouin, J. L. Petit, M. Salanoubat, V. de Berardinis, A.
Zaparucha, C. Vergne-Vaxelaire, Catal. Sci. Technol.
2016, 6, 7421-7428.
Substrate
Concentration
L-AmDH
TV/L39A
3
5
7
10 mM
10 mM
2 mM
65.4 ± 2.2%
1.7 ± 0.1%
n.d.
48.5 ± 1.6%
56.3 ± 4.4%
51.9 ± 0.5%
[8]
[9]
a) A. A. Caparco, A. S. Bommarius, J. A. Champion,
AIChE J. 2018, 64, 2934-2946; b) W. Bohmer, T. Knaus,
F. G. Mutti, ChemCatChem 2018, 10, 731-735; c) H. Ren,
Y. Zhang, J. Su, P. Lin, B. Wang, B. Fang, S. Wang, J.
Biotechnol. 2017, 241, 33-41; d) J. Liu, B. Q. W. Pang, J.
P. Adams, R. Snajdrova, Z. Li, ChemCatChem 2017, 9,
425-431.
R. D. Franklin, J. A. Whitley, J. M. Robbins, A. S.
Bommarius, Chem. Eng. J. 2019, 369, 634-640.
J. Liu, Z. Li, Biotechnol. Bioeng. 2019, 116, 536-542.
a) S. Yoon, M. D. Patil, S. Sarak, H. Jeon, G. H. Kim, T. P.
Khobragade, S. Sung, H. Yun, ChemCatChem 2019, 11,
1898-1902; b) F. G. Mutti, T. Knaus, N. S. Scrutton, M.
Breuer, N. J. Turner, Science 2015, 349, 1525-1529; c) H.
Wang, Y.-C. Zheng, F.-F. Chen, J.-H. Xu, H.-L. Yu,
ChemCatChem 2020, DOI 10.1002/cctc.201902253; d) F.
F. Chen, Y. H. Zhang, Z. J. Zhang, L. Liu, J. P. Wu, J. H.
Xu, G. W. Zheng, J. Org. Chem. 2019, 84, 14987-14993.
K. Kataoka, K. Tanizawa, J. Mol. Catal. B: Enzym. 2003,
23, 299-309.
Reaction conditions: 2 mg each of AmDH and cbFDH, 1 mM NAD+, ketone
concentration as listed, 2M NH4COOH/NH4OH, pH 8.5, 21 °C, 50 mL reaction
volume, rotating at 20 rpm for 24 hours.
In conclusion, we found two sets of mutations to improve L-AmDH
which result in either increased specific activity and
thermodynamic stability, or in an altered substrate specificity
towards longer or branched methylketones. While the first set of
mutations acts synergistically to increase L-AmDH activity and
stability, the second set of three mutations for change substrate
specificity does not. Instead, that second set enables picking a
desired specificity trait, such as a long side chain of a
methylketone or branched alkylmethylketone, with a specific
mutation. Thus, the current work is an important step towards a
differentiated family of sufficiently stable amine dehydrogenases.
[10]
[11]
[12]
[13]
[14]
J. Rozzell, L. Hua, M. Mayhew, S. Novick (Biocatalytics
Inc), US20040115691A1, 2004.
a) S. Bienert, A. Waterhouse, T. A. de Beer, G. Tauriello,
G. Studer, L. Bordoli, T. Schwede, Nucleic Acids Res,
2017, 45, D313-D319; b) A. Waterhouse, M. Bertoni, S.
Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer,
T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T.
Schwede, Nucleic Acids Res. 2018, 46, W296-W303.
H. Yamaguchi, A. Kamegawa, K. Nakata, T. Kashiwagi, T.
Mizukoshi, Y. Fujiyoshi, K. Tani, J. Struct. Biol. 2019, 205,
11-21.
Acknowledgements
Funding for the reported work by the National Science Foundation
through NSF CBET grant 1512848 and NSF I/UCRC grant
1540017 to the Center for Pharmaceutical Development is
gratefully acknowledged. We also wish to acknowledge the
Biopolymer Characterization (BPC) core facility at the Parker H.
Petit Institute for Bioengineering and Bioscience at the Georgia
Institute of Technology for the use of its shared equipment,
services and expertise.
[15]
[16]
N. M. Brunhuber, J. B. Thoden, J. S. Blanchard, J. L.
Vanhooke, Biochemistry 2000, 39, 9174-9187.
Keywords: amine dehydrogenases • biocatalysis • enzyme
catalysis • protein engineering • reductive amination
4
This article is protected by copyright. All rights reserved.