In this simulation, simulation volume was meshed into 1 nm resolution
in the organic and metallic regions. Far removed from the organic and
metallic regions, a larger mesh size was used to reduce computational
load. Total simulation volume was 170 × 220 × 170 nm3 and a plane
wave source, propagating in y direction, was used. Periodic boundaries
were employed in x- and z-direction and perfectly matched layers were
adopted in y direction for termination. 3-dimensional and 2-dimensional
monitors were used to collect electric field data for calculation of the
field enhancement and absorption.
NADH Photoregeneration and Photoenzymatic Synthesis of L-Glutamate:
For the photoregeneration of NADH, nanohybrid films formed on slide
glasses were immersed in 3 mL of reaction medium in quartz cells and
were kept in the dark with vigorous stirring for 30 minutes to ensure
fully homogenized reactors before the photocatalytic reaction. The
reaction medium was composed of NAD+ (1 mM), [Cp*Rh(bpy)H2O]2+
(0.5 mM), and TEOA (15 w/v%) in a phosphate buffer (100 mM, pH
7.5). A xenon lamp (450 W) with a 420-nm cut-off filter was used as a
light source. During light irradiation, the absorbance of the reaction
medium at 340 nm was measured to estimate the concentration of
photoregenerated NADH. The photoenzymatic synthesis of L-glutamate
coupled with photoregeneration of NADH was performed using the
same experimental set-up with the exception of the reaction medium.
The reaction medium for L-glutamate conversion consisted of NAD+
(1 mM), [Cp*Rh(bpy)H2O]2+ (0.5 mM), TEOA (15 w/v%),
α-ketoglutarate (5 mM), (NH4)2SO4 (100 mM), and GDH (40 U) in a
phosphate buffer (100 mM, pH 7.5). The amount of L-glutamate during
the photoenzymatic reaction was analyzed using liquid chromatography
(LC-20A prominence, Shimadzu, Japan) equipped with an Inertsil C18
column (ODS-3V, length: 150 mm).
[10] S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, M. Moskovits,
Nat. Nanotechnol. 2013, 8, 247.
[11] D. B. Ingram, S. Linic, J. Am. Chem. Soc. 2011, 133, 5202.
[12] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown,
J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas,
Nano Lett. 2012, 13, 240.
[13] Z. W. Seh, S. Liu, M. Low, S.-Y. Zhang, Z. Liu, A. Mlayah, M.-Y. Han,
Adv. Mater. 2012, 24, 2310.
[14] F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J. C. Y u ,
C.-H. Yan, J. Am. Chem. Soc. 2013, 135, 5588.
[15] A. Marimuthu, J. Zhang, S. Linic, Science 2013, 339, 1590.
[16] K. Mori, M. Kawashima, M. Che, H. Yamashita, Angew. Chem. Int.
Ed. 2010, 49, 8598.
[17] E. Seo, J. Kim, Y. Hong, Y. S. Kim, D. Lee, B.-S. Kim, J. Phys. Chem.
C 2013, 117, 11686.
[18] H. Chen, T. Ming, L. Zhao, F. Wang, L.-D. Sun, J. Wang, C.-H. Yan,
Nano Today 2010, 5, 494.
[19] H. Duan, H. Hu, K. Kumar, Z. Shen, J. K. W. Yang, ACS Nano 2011,
5, 7593.
[20] J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas,
V. N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science
2010, 328, 1135.
[21] M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille,
C. A. Mirkin, Chem. Rev. 2011, 111, 3736.
[22] C.-W. Yen, S. C. Hayden, E. C. Dreaden, P. Szymanski,
M. A. El-Sayed, Nano Lett. 2011, 11, 3821.
[23] I. Kim, S. L. Bender, J. Hranisavljevic, L. M. Utschig, L. Huang,
G. P. Wiederrecht, D. M. Tiede, Nano Lett. 2011, 11, 3091.
[24] L. Novotny, N. van Hulst, Nat. Photon. 2011, 5, 83.
[25] H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science
2007, 318, 426.
[26] J. Sedó, J. Saiz-Poseu, F. Busqué, D. Ruiz-Molina, Adv. Mater. 2013,
25, 653.
[27] S. M. Kang, N. S. Hwang, J. Yeom, S. Y. Park, P. B. Messersmith,
I. S. Choi, R. Langer, D. G. Anderson, H. Lee, Adv. Funct. Mater.
2012, 22, 2949.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[28] J. Ryu, S. H. Ku, H. Lee, C. B. Park, Adv. Funct. Mater. 2010, 20,
2132.
Acknowledgements
[29] S. H. Lee, D. H. Nam, J. H. Kim, J.-O. Baeg, C. B. Park, ChemBio-
Chem 2009, 10, 1621.
This work was supported from the National Research Foundation
(NRF) grants of the National Leading Research Laboratory (NRF-
2013R1A2A1A05005468), the Intelligent Synthetic Biology Center of
Global Frontier R&D Project (2011–0031957), the Converging Research
Center (2010–50207), the NRF MSIP Project (No. 2008–0061893, NRF-
2012M3A7B4035327), and the NRF R&D Joint Venture Program.
[30] S. H. Lee, D. H. Nam, C. B. Park, Adv. Synth. Catal. 2009, 351, 2589.
[31] C. Oubre, P. J. Nordlander, Proc. SPIE 2003, 5221, 133.
[32] N. G. Greeneltch, A. S. Davis, N. A. Valley, F. Casadio, G. C. Schatz,
R. P. Van Duyne, N. C. Shah, J. Phys. Chem. A 2012, 116, 11863.
[33] S. H. Lee, J. H. Kim, C. B. Park, Chem. Eur. J. 2013, 19, 4392.
[34] J. Ryu, S. H. Lee, D. H. Nam, C. B. Park, Adv. Mater. 2011, 23, 1883.
[35] J. H. Kim, M. Lee, J. S. Lee, C. B. Park, Angew. Chem. Int. Ed. 2012,
51, 517.
Received: November 21, 2013
Revised: January 27, 2014
Published online:
[36] Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photon. 2012, 6, 511.
[37] J.-D. Rochaix, Science 2013, 342, 50.
[38] J. Barber, Chem. Soc. Rev. 2009, 38, 185.
[1] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle,
Nat. Chem. 2011, 3, 763.
[2] A. A. Boghossian, M.-H. Ham, J. H. Choi, M. S. Strano, Energy
Environ. Sci. 2011, 4, 3834.
[39] R. A. Zangmeister, T. A. Morris, M. J. Tarlov, Langmuir 2013, 29,
8619.
[3] S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
[4] H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
[5] S. C. Warren, E. Thimsen, Energ. Environ. Sci. 2012, 5, 5133.
[6] W. Hou, S. B. Cronin, Adv. Funct. Mater. 2013, 23, 1612.
[7] J. Qi, X. Dang, P. T. Hammond, A. M. Belcher, ACS Nano 2011, 5,
7108.
[8] A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger,
Nano Lett. 2010, 10, 1501.
[9] M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo,
A. Petrozza, M. M. Lee, U. Wiesner, H. J. Snaith, Nano Lett. 2010,
11, 438.
[40] M. Ambrico, P. F. Ambrico, A. Cardone, N. F. Della Vecchia,
T. Ligonzo, S. R. Cicco, M. M. Talamo, A. Napolitano, V. Augelli,
G. M. Farinola, M. d’Ischia, J. Mater. Chem. C 2013, 1, 1018.
[41] V. Ball, D. D. Frari, V. Toniazzo, D. Ruch, J. Colloid Interface Sci.
2012, 386, 366.
[42] S. D. Standridge, G. C. Schatz, J. T. Hupp, J. Am. Chem. Soc. 2009,
131, 8407.
[43] T. Kawawaki, Y. Takahashi, T. Tatsuma, Nanoscale 2011, 3, 2865.
[44] L. Duan, M. Chen, S. Zhou, L. Wu, Langmuir 2009, 25, 3467.
[45] E. Nitanai, S. Miyanaga, Opt. Eng. 1996, 35, 900.
[46] P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370.
©
6
wileyonlinelibrary.com
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Mater. 2014,
DOI: 10.1002/adma.201305766