T. Schmidt et al. / Bioorganic Chemistry 37 (2009) 84–89
89
Fig. 5. Progression of the potentiometric titration of L-Glu and L-His without (d) and with (s) 30% (v/v) DMSO.
[6] M. Zavrel, T. Schmidt, C. Michalik, M. Ansorge-Schumacher, W. Marquardt, J.
Büchs, A.C. Spiess, Biotechnol. Bioeng. 101 (2008) 27–38.
[7] N. Nemeria, L. Korotchkina, M.J. McLeish, G.L. Kenyon, M.S. Patel, F. Jordan,
Biochemistry 46 (2007) 10739–10744.
[8] E. Janzen, M. Muller, D. Kolter-Jung, M.M. Kneen, M.J. McLeish, M. Pohl, Bioorg.
Chem. 34 (2006) 345–361.
[9] T. Stillger, M. Pohl, C. Wandrey, A. Liese, Org. Process Res. Dev. 10 (2006) 1172–
1177.
[10] P. Domínguez de María, T. Stillger, M. Pohl, S. Wallert, K. Drauz, H. Grögerm, H.
Trauthwein, A. Liese, J. Mol. Catal. B: Enzym. 38 (2006) 43–47.
[11] A.S. Demir, Ö. Sesenoglu, P. Dunkelmann, M. Muller, Org. Lett. 5 (2003) 2047–
2050.
4. Conclusions
Reported biochemical peculiarities of benzaldehyde lyase from
Pseudomonas fluorescens Biovar I. (BAL, EC 4.1.2.38) regarding pH
optimum and dependence on DMSO can be explained by a direct
interaction of DMSO with the amino acid side chain Glu50 in the
catalytic site of the biocatalyst. This finding is important since it al-
lows a better understanding of the catalytic mechanism of this en-
zyme, and consequently
a deduction of optimal reaction
[12] A.S. Demir, Ö. Sesenoglu, E. Eren, B. Hosrik, M. Pohl, E. Janzen, D. Kolter, R.
Feldmann, P. Dünkelmann, M. Müller, Adv. Synth. Catal. 344 (2002)
96–103.
[13] T. Hischer, D. Gocke, M. Fernández, P. Hoyos, A.R. Alcántara, J.V. Sinisterra,
W. Hartmeier, M.B. Ansorge-Schumacher, Tetrahedron 61 (2005)
7378–7383.
conditions. Moreover, as Glu50 is an amino acid residue which is
highly conserved in the whole class of ThDP-dependent enzymes,
e.g. pyruvate decarboxylase [31], it can be expected that the ob-
served relation between enzyme activity, pH-dependency, and
DMSO concentration will also apply to these. Thus, the findings
provide a novel argument against the use of DMSO as cosolvent
in the application of a whole subclass of synthetically valuable bio-
catalysts, additional to the known complication of downstream
processing caused by DMSO. It will have to be further investigated
whether similar effects occur with alternative water miscible sol-
vents required to enhance water solubility of substrates and prod-
ucts in the enzyme catalysed reactions.
[14] E. Janzen, Biochemische Charakterisierung und die Untersuchung von
Struktur-Funktionsbeziehungen,
2002.
Heinrich-Heine-Universität,
Düsseldorf,
[15] H. Iding, P. Siegert, K. Mesch, M. Pohl, Biochim. Biophys. Acta, Protein Struct.
Mol. Enzymol. 1385 (1998) 307–322.
[16] M.J. Taylor, J. Chem. Eng. Data 24 (1979) 230–233.
[17] P. Mukerjee, J.D. Ostrow, Tetrahedron Lett. 39 (1998) 423–426.
[18] K. Laidler, P. Bunting, The Chemical Kinetics of Enzyme Action, Clarendon
Press, Oxford, 1973.
[19] B.E. Dale, D.H. White, Enzyme Microb. Technol. 5 (1983) 227–229.
[20] K. Hiyama, S. Okada, J. Biochem. 82 (1977) 429–436.
[21] G. Kossekova, B. Atanasov, R. Bolli, A. Azzi, Biochem. J. 262 (1989) 591–596.
[22] Z. Yang, D. Zacherl, A.J. Russell, J. Am. Chem. Soc. 115 (1993) 12251–12257.
[23] P.A. Frey, A.D. Hegeman, Enzymatic Reaction Mechanisms, Oxford University
Press, New York, 2007.
[24] A. Marangoni, Enzyme Kinetics – A Modern Approach, John Wiley & Sons, Inc,
Hoboken, New Jersey, 2003.
[25] K. Taylor, Enzyme Kinetics and Mechanisms, Kluwer Academic Publishers,
New York, 2002.
[26] K. Buchholz, V. Kasche, U. Bornscheuer, Biocatalysts and Enzyme Technology,
VCH-Wiley, Weinheim, 2005.
Acknowledgments
We gratefully acknowledge the financial support by the Deut-
sche Forschungsgemeinschaft DFG via the collaborative research
center 540 (Model-based experimental analysis of kinetic phenom-
ena in fluid multi-phase reactive systems) and GRK 1166 (Biocatal-
ysis using non-conventional media – BioNoCo).
[27] F. Bordwell, Acc. Chem. Res. 21 (1988) 456–463.
[28] J. Kruusma, A. Rhodes, R. Bhatia, J. Williams, A. Benham, R. Kataky, J. Solution
Chem. 36 (2007) 517–529.
[29] G.J. Safford, P.C. Schaffer, P.S. Leung, G.F. Doebbler, W.B. George, E.F.X. Lyden, J.
Chem. Phys. 50 (1969) 2140–2159.
References
[1] A.S. Demir, H. Hamamci, Ö. Sesenoglu, F. Aydogan, D. Capanoglu, R.
Neslihanoglu, Tetrahedron: Asymmetry 12 (2001) 1953–1956.
[2] A.S. Demir, M. Pohl, E. Janzen, M. Müller, J. Chem. Soc., Perkin Trans. 1 (2001)
633–635.
[30] T.G. Mosbacher, M. Mueller, G.E. Schulz, Febs J. 272 (2005) 6067–6076.
[31] F. Jordan, Nat. Prod. Rep. 2 (2003) 184–201.
[3] M. Pohl, B. Lingen, M. Müller, Chem. Eur. J. 8 (2002) 5289–5295.
[4] H. Iding, T. Dünnwald, L. Greiner, A. Liese, M. Müller, P. Siegert, J. Grötzinger,
A.S. Demir, M. Pohl, Chem. Eur. J. 6 (2000) 1483–1495.
[5] P. Dünkelmann, D. Kolter-Jung, A. Nitsche, A.S. Demir, P. Siegert, B. Lingen, M.
Baumann, M. Pohl, M. Muller, J. Am. Chem. Soc. 124 (2002) 12084–12085.
[32] A. Schellenberg, Biochim. Biophys. Acta – Protein Struct. Mol. Enzymol. 1385
(1998) 177–186.
[33] S. Chakraborty, N. Nemeria, A. Yep, M.J. McLeish, G.L. Kenyon, F. Jordan,
Biochemistry 47 (2008) 3800–3809.