ORGANIC
LETTERS
2013
Vol. 15, No. 22
5754–5757
Synthesis of Solid 2‑Pyridylzinc Reagents
and Their Application in Negishi Reactions
James R. Colombe,† Sebastian Bernhardt,‡ Christos Stathakis,‡
Stephen L. Buchwald,*,† and Paul Knochel*,‡
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States, and Department Chemie,
€
Ludwig-Maximilians-Universitat Munchen, Butenandtstr. 5-13, 81377 Munchen,
€
€
Germany
sbuchwal@mit.edu; Paul.Knochel@cup.uni-muenchen.de
Received September 26, 2013
ABSTRACT
In search of alternatives to unstable or unreliable 2-pyridylboron reagents, we have explored two new varieties of solid, moderately air-stable
2-pyridylzinc reagents. Both reagents can be manipulated in air and are competent nucleophiles in Negishi cross-coupling reactions.
The 2-pyridyl group is a structural component of a
variety of biologically active compounds,1 functional
materials,2 and ligands in metal-mediated reactions.3
While SuzukiꢀMiyaura coupling with heteroaryl boro-
nates is a convenient and popular method for the installa-
tion of heteroaryls,4 coupling of 2-pyridyl boronates5 is
plagued by reagent instability6 and has been slow to
develop. The best strategy for this problem has been the
employment of 2-pyridyl MIDA5d and pinacol5eꢀg boro-
nates, but a method with milder conditions and higher
generality with respect to 2-pyridyl nucleophiles and elec-
trophilic coupling partners remains highly desirable.
In contrast, 2-pyridylzinc reagents are excellent nucleo-
philes in cross-coupling processes and their reactions often
proceed at room temperature.7 Although these reagents
are more basic than the corresponding boronates, their use
avoids the troublesome protodeboronation issues com-
monly observed with 2-heteroarylboronates. We have
concurrently pursued two strategies to obtain solid, air-
stable 2-pyridylzinc reagents, with the goal of uniting the
operational simplicity of boronates and the reliability of
2-pyridylzinc halides.
(5) (a) Molander, G. A.; Canturk, B.; Kennedy, L. E. J. Org. Chem.
2009, 74, 973–980. (b) Ren, W.; Li, J.; Zou, D.; Wu, Y. Tetrahedron 2012,
68, 1351–1358. (c) Billingsley, K. L.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2008, 47, 4695–4698. (d) Dick, G. R.; Woerly, E. M.; Burke, M. D.
Angew. Chem., Int. Ed. 2012, 51, 2667–2672. (e) Deng, J. Z.; Paone,
D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.;
Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 11, 345–347. (f) Crowley,
B. M.; Potteiger, C. M.; Deng, J. Z.; Prier, C. K.; Paone, D. V.; Burgey,
C. S. Tetrahedron Lett. 2011, 52, 5055–5059. (g) Yang, D. X.; Colletti,
S. L.; Wu, K.; Song, M.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381–
384. (h) Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew.
Chem., Int. Ed. 2008, 47, 928–931. (i) Sakashita, S.; Takizawa, M.; Sugai,
J.; Ito, H.; Yamamoto, Y. Org. Lett. 2013, 15, 4308–4311.
† Massachusetts Institute of Technology.
‡
€
Ludwig-Maximilians-Universitat M€unchen.
(1) (a) Ohori, M.; Kinoshita, T.; Okubo, M.; Sato, K.; Yamazaki, A.;
Arakawa, A.; Nishimura, S.; Inamura, N.; Nakajima, H.; Neya, M.;
Miyake, H.; Fujii, T. Biochem. Biophys. Res. Commun. 2005, 336, 357–
363. (b) Rao, K. V.; Cullen, W. Antibiot. Annu. 1959, 7, 950–953. (c)
Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro, M. H. G.;
Parkin, S.; Hope, H. Tetrahedron 1994, 50, 3987–3992. (d) Jakubec, P.;
Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am. Chem. Soc. 2012, 134,
17482–17485.
(2) (a) Whittell, G. R.; Manners, I. Adv. Mater. 2007, 19, 3439–3468.
€
(b) Wild, A.; Winter, A.; Schlutter, F.; Schubert, U. S. Chem. Soc. Rev.
(6) Lennox, A. J. J.; Lloyd-Jones, G. C. Isr. J. Chem. 2010, 50, 664–
674.
2011, 40, 1459–1511. (c) Glasson, C. R. K.; Lindoy, L. F.; Meehan, G. V.
Coord. Chem. Rev. 2008, 252, 940–963.
(3) (a) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134,
17456–17458. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Chem. Rev. 2013, 113, 5322–5363. (c) Izawa, Y.; Zheng, C.; Stahl, S. S.
Angew. Chem., Int. Ed. 2013, 52, 3672–3675. (d) Chelucci, G.; Thummel,
R. P. Chem. Rev. 2002, 102, 3129–3170.
(7) (a) Coleridge, B. M.; Bello, C. S.; Ellenberger, D. H.; Leitner, A.
Tetrahedron Lett. 2010, 51, 357–359. (b) Walla, P.; Kappe, C. O. Chem.
Commun. 2004, 564–565. (c) Luzung, M. R.; Patel, J. S.; Yin, J. J. Org.
Chem. 2010, 75, 8330–8332 and references therein. (d) Kim, S.-H.; Rieke,
R. D. Tetrahedron Lett. 2009, 50, 5329–5331. (e) Kim, S.-H.; Rieke,
R. D. Tetrahedron 2010, 66, 3135–3146. (f) Kim, S.-H.; Rieke, R. D.
Tetrahedron Lett. 2010, 51, 2657–2659. (g) Yang, Y.; Oldenhuis, N. J.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615–619.
(4) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14073–14075.
r
10.1021/ol402798z
Published on Web 10/24/2013
2013 American Chemical Society