3618
S.Pal et al./ Bioorg.Med.Chem.10 (2002) 3615–3618
cellular conversion to the monophosphate may be
through the sequential action of PNP and HGPRT.
Acknowledgements
We thank the National Institutes of Health (NIAID)
for support of these investigations. The authors express
their gratitude to Dr. R. C. Kamboj for technical
assistance.
References and Notes
1. Jackson, R. C.; Weber, G.; Morris, H. P. Nature 1975, 256,
331.
Figure 4. Plot of 1/Kobs versus 1/[I] for calculation of kinact and Ki.
2. De Clercq, E. Rev.Med.Virol. 1995, 5, 149.
3. Jayaram, H. N.; Grusch, M.; Cooney, D. A.; Krupitza, G.
Curr.Med.Chem. 1999, 6, 561.
4. Franchetti, P.; Grifantini, M. Curr.Med.Chem. 1999, 6, 599.
5. Jain, J.; Almquist, S. J.; Shlyakhter, D.; Harding, M. W.
J.Pharm.Sci. 2001, 90, 623.
6. Wu, J. C. Perspect. Drug Disc.Des. 1994, 2, 185.
7. Pani, A.; Marongiu, M. E.; Pinna, E.; Scintu, F.; Perra, G.;
De Montis, A.; Manfredini, S.; La Colla, P. Anticancer Res.
1998, 18, 2623.
The data thus obtained show that 2-vinylinosine mono-
phosphate is a potent inhibitor of IMPDH with a Ki of
3.98 mM and a kinact of 2.94ꢀ10ꢁ2
s
ꢁ1. A side-by-side
comparison with the well-known IMPDH inhibitor,
6-chloropurine ribonucleoside monophosphate, gave
values for Ki and kinact indicative of a weaker inhibitor
(Ki=62.0 mM and kinact=7.60ꢀ10ꢁ2 sꢁ1).
Attempts made to recover the activity of VIMP-inacti-
vated enzyme were unsuccessful. On the other hand, a
control experiment of urea denaturation followed by
renaturation, showed almost 80% recovery of activity.
When IMPDH was incubated with various concentra-
tions of inhibitor, 2-VIMP, in the presence of excess of
its normal substrate, IMP, the enzyme inhibition/inac-
tivation again followed psuedo first-order kinetics, and
the data were as follows: Ki=163.0 mM and
8. Franchetti, P.; Cappellacci, L.; Grifantini, M.; Barzi, A.;
Nocentini, G.; Yang, H.; O’Connor, A.; Jayaram, H. N.;
Carrell, C.; Goldstein, B. M. J.Med.Chem. 1995, 38, 3829.
9. Zimmermann, A. G.; Gu, J-J.; Laliberte, J.; Mitchell, B. S.
Prog.Nucl.Acid Res.Mol.Biol.
1998, 61, 181.
10. Hampton, A.; Nomura, A. Biochemistry 1967, 6, 679.
11. Antonino, L. C.; Straub, K.; Wu, J. C. Biochemistry 1994,
33, 1760.
12. Hedstrom, L. Curr.Med.Chem. 1999, 6, 545.
13. Colby, T. D.; Vanderveen, K.; Strickler, M. D.; Mark-
ham, G. D.; Goldstein, B. M. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 3531.
14. Kuttan, R.; Saunders, P. Biochem.Intl. 1987, 14, 211.
15. Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.;
Witkowski, J. T.; Robins, R. K. Virology 1972, 168, 147.
16. Rankin, J. T.; Eppes, S. B.; Antczak, J. B.; Joklik, W. K.
Virology 1989, 168, 147.
17. De Clercq, E. Adv.Virus Res. 1993, 42, 1.
18. Allen, L. B.; Huffman, J. H.; Cook, P. D.; Meyer, R. B.;
Robins, R. K.; Sidwell, R. W. Antimicrob.Agents Chemother.
1977, 12, 114.
19. De Clercq, E.; Cools, M.; Balzarini, J.; Snoeck, R.;
Andrei, G.; Hosoya, M.; Shigeta, S.; Ueda, T.; Minakawa, N.;
Matsuda, A. Antimicrob.Agents Chemother. 1991, 12, 679.
20. (a) Wang, W.; Papov, V. V.; Minakawa, N.; Matsuda, A.;
Biemann, K.; Hedstrom, L. Biochemistry 1996, 35, 95. (b)
Digits, J. A.; Hedstrom, L. Biochemistry 1999, 38, 2295.
21. Nair, V.; Ussery, M. A. Antiviral Res. 1992, 19, 173.
22. Hager, P. W.; Collart, F. R.; Huberman, E.; Mitchell, B. S.
Biochem.Pharmacol. 1995, 49, 1323.
23. Nair, V.; Turner, G. A.; Buenger, G. S.; Chamberlain,
S. D. J.Org.Chem. 1988, 53, 3051.
24. Zhang, H.-Z.; Roa, K.; Carr, S. F.; Papp, E.; Straub, K.;
Wu, J. C.; Fried, J. J.Med.Chem. 1997, 40, 4.
25. Kerr, K. M.; Digits, J. A.; Kuperwasser, N.; Hedstrom, L.
Biochemistry 2000, 39, 9804.
kinact=3.30ꢀ10ꢁ2
s
ꢁ1. These experiments suggest that
the binding of IMPDH with 2-VIMP may involve a
reversible competitive step which is followed by the
inactivation process. The results indicate that the inhi-
bition caused by 2-VIMP may be due to the formation
of an apparently irreversible covalent bond between the
inhibitor and IMPDH where the vinyl group conjugated
to the purine ring of VIMP acts as a Michael acceptor
presumably for Cys-331 of the enzyme.
2-Vinylinosine is not a substrate for adenosine kinase
but it is a cleaved slowly by purine nucleoside phos-
phorylase (PNP, calf spleen, 30% cleavage)26 and the
resulting base appears to be a substrate for hypoxan-
thine–guanine phosphoribosyl transferase (HGPRT)
(10% conversion).27
Conclusion
2-Vinylinosine has been found to possess broad-spec-
trum antiviral activity against a number of exotic RNA
viruses including JEV, PIC, PT, VEE and YF.21 The
mechanism of this antiviral activity may be associated
with the ability of the cellularly produced monophos-
phate of this compound to be an inhibitor of IMPDH.
Preliminary results from our laboratory suggest that its
26. Pal, S.; Nair, V. Biocatalysis and Biotransformation 1997,
15, 147.
27. Ali, L. Z.; Sloan, D. L. J.Biol.Chem. 1982, 257, 1149.