complexes and PPV. Compared with the electron transfer
mechanism previously proposed, the FRET mechanism can
improve the sensitivity of TNT detection. In addition, we
expect this study can open up a new perspective in the design
of ratiometric sensors for various analytes based on FRET
technology.
This work was supported by the National Natural Science
Foundation of China (21074019) and Natural Science Foundation
of Jilin Province (20101539).
Notes and references
1 (a) G. J. Guan, Z. P. Zhang, Z. Y. Wang, B. H. Liu, D. M. Gao
and C. G. Xie, Adv. Mater., 2007, 19, 2370; (b) M. E. Germain and
M. J. Knapp, Chem. Soc. Rev., 2009, 38, 2543; (c) L. H. Tang,
H. B. Feng, J. S. Cheng and J. H. Li, Chem. Commun., 2010,
46, 5882.
2 S. J. Toal and W. C. Trogler, J. Mater. Chem., 2006, 16, 2871.
3 (a) J. S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998,
120, 11864; (b) S. J. Toal, D. Magde and W. C. Trogler, Chem.
Commun., 2005, 5465; (c) G. He, N. Yan, J. Y. Yang, H. Y. Wang,
L. P. Ding, S. W. Yin and Y. Fang, Macromolecules, 2011,
44, 4759; (d) K. Zhang, H. B. Zhou, Q. S. Mei, S. H. Wang,
G. J. Guan, R. Y. Liu, J. Zhang and Z. P. Zhang, J. Am. Chem.
Soc., 2011, 133, 8424; (e) G. P. Anderson, S. C. Moreira,
P. T. Charles, I. L. Medintz, E. R. Goldman, M. Zeinali and
C. R. Taitt, Anal. Chem., 2006, 78, 2279; (f) E. R. Goldman,
I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp,
H. T. Uyeda, J. R. Deschamps, M. E. Lassman and H. Mattous,
J. Am. Chem. Soc., 2005, 127, 6744; (g) Y. S Xia, L. Song and
C. Q. Zhu, Anal. Chem., 2011, 83, 1401.
4 (a) A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager and
V. Bulovic, Nature, 2005, 434, 876; (b) C. M. Deng, Q. G. He,
C. He, L. Q. Shi, J. G. Cheng and T. Lin, J. Phys. Chem. B, 2010,
114, 4725; (c) H. Li, J. X. Wang, Z. L. Pan, L. Y. Cui, L. Xu,
R. M. Wang, Y. L. Song and L. Jiang, J. Mater. Chem., 2011,
21, 1730.
5 J. C. Feng, Y. Li and M. J. Yang, Sens. Actuators, B, 2010,
145, 438.
6 J. Yang, S. Aschemeyer, H. P. Martinez and W. C. Trogler, Chem.
Commun., 2010, 46, 6804.
7 (a) K. J. Albert and D. R. Walt, Anal. Chem., 2000, 72, 1947;
(b) S. Y. Tao, J. X. Yin and G. T. Li, J. Mater. Chem., 2008,
18, 4872.
8 Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer and
F. Patolsky, Angew. Chem., Int. Ed., 2010, 49, 6830.
9 F. Claude and J. Bernasconi, J. Org. Chem., 1971, 36, 1671.
10 T. L. Kelly, Y. Yamada, C. Schneider, K. Yano and M. O. Wolf,
Adv. Funct. Mater., 2009, 19, 3737.
Fig. 3 Evolution of fluorescence spectra of PPV@MSN-NH2 (a) and
of pure PPV@MSN (b) with concentration increase of TNT and for
PPV@MSN-NH2 with DNT (c). (d) Stern–Volmer plots corresponding
to the above graphs. The concentrations of TNT and DNT from top
to bottom are 0, 1, 2, 5, 10, 15 and 25 mM, respectively. The amount of
silica nanoparticles is 3.4 mg mLÀ1 in ethanol.
that the electron accepting ability of DNT with two nitro
groups is much weaker than TNT molecules with three
nitro groups, and the consequent low affinity towards the
amino groups and weak electron-accepting ability lead to the
low quenching efficiencies of DNT.16 The quenching response
was analyzed by fitting the data to the Stern–Volmer equation
((I0/I) À 1 = KSVCA)17 (Fig. 3d), where I0 and I are the
fluorescence intensity in the absence and presence of analyte
(quencher, A), respectively, CA is the molar concentration of
the analyte, and KSV is the corresponding Stern–Volmer
quenching constant. The TNT quenching fluorescence toward
PPV@MSN-NH2 had a distinct linear response to this equa-
tion in the concentration range of 0–25 mM with a corre-
lation coefficient of 0.9987, and a linear regression equation of
(I0/I) À 1 = À0.03 + [7.42 Â 104]CTNT (the DNT data and
that for PPV@MSN are given in Table S2, ESIw). The
KSV value of PPV@MSN-NH2 to TNT is about 4.8-fold
relative to that for DNT and 20-fold that of pure PPV@MSN.
This result shows that the PPV@MSN-NH2 greatly amplifies
the quenching response to TNT through highly efficient
FRET. The detection limit of TNT using PPV@MSN-NH2
is 6 Â 10À7 M (CL = kSB/m, where k is a constant, usually
k = 3, SB is the standard deviation of the blank signal (F0),
and m is the quenching constant of quencher, which is equal
to the KSV of the Stern–Volmer equation), while for pure
PPV@MSN the detection limit is only 1 Â 10À5 M. Therefore
the amino-functionalized PPV@MSN nanosensor can improve
the sensitivity of TNT detection nearly 16 times as compared to
pure PPV@MSN.
11 (a) S. W. Song, K. Hidajat and S. Kawi, Langmuir, 2005, 21, 9568;
(b) X. C. Fu, X. Chen, J. Wang, J. H. Liua and X. J. Huang,
Electrochim. Acta, 2010, 56, 102–107.
12 J. E. Haskouri, D. O. Zarate, C. Guillem, J. Latorre, M. Caldes,
A. Beltran, D. Beltran, A. B. Descalzo, R. L. Gertrudis,
M. M. Ramon, M. D. Marcos and P. Amoros, Chem. Commun.,
2002, 330.
13 K. Moller, J. Kobler and T. Bein, Adv. Funct. Mater., 2007,
¨
17, 605.
14 B. Marler, U. Oberhagemann, S. Vortmann and H. Gies, Microporous
Mater., 1996, 6, 375.
15 D. M. Gao, Z. Y. Wang, B. H. Liu, L. Ni, M. H. Wu and
Z. P. Zhang, Anal. Chem., 2008, 80, 8545.
16 (a) R. Y. Tu, B. H. Liu, Z. Y. Wang, D. M. Gao, F. Wang,
Q. L. Fang and Z. P. Zhang, Anal. Chem., 2008, 80, 3458;
(b) Y. F. Chen, Z. Chen, Y. J. He, H. L. Lin, P. F. Sheng,
C. B. Liu, S. L. Luo and Q. Y. Cai, Nanotechnology, 2010,
21, 125502.
In summary, we have demonstrated that the PPV@MSN-NH2
can be used as a nanosensor for TNT sensing. It shows good
fluorescence quenching sensitivity towards TNT through FRET
because of the good energy matching between TNT–amine
17 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum
Press, New York, 1986.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4633–4635 4635