Communication
Green Chemistry
Fellowship (KW). We also acknowledge the kind assistance of
Mark Isaacs for XPS analysis and D.C. Apperley at the EPSRC
UK National Solid-state NMR Service at Durham.
Notes and references
1
2
J. H. Clark, Acc. Chem. Res., 2002, 35, 791–797.
R. Rinaldi and F. Schuth, Energy Environ. Sci., 2009, 2,
610–626.
3
4
5
6
R. Luque, J. C. Lovett, B. Datta, J. Clancy, J. M. Campelo
and A. A. Romero, Energy Environ. Sci., 2010, 3, 1706–1721.
J. M. Marchetti, V. U. Miguel and A. F. Errazu, Fuel Process.
Technol., 2008, 89, 740–748.
J. A. Melero, J. Iglesias and G. Morales, Green Chem., 2009,
11, 1285–1308.
Fig. 2 Conversion of glyceryl tributyrate and tripalmitate with methanol
at 80 °C respectively after 24 hours reaction over PrSO3H/SBA-15-Tol,
E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce
and J. G. Goodwin, Ind. Eng. Chem. Res., 2005, 44,
5353–5363.
3 3
PrSO H/SBA-15-200 and PrSO H-SBA-15-OP. Inset shows the corre-
1
lation between TOF for tripalmitin transesterification with δ H.
7
8
9
Y. Feng, A. Zhang, J. Li and B. He, Bioresour. Technol., 2011,
102, 3607–3609.
P. T. Anastas, L. B. Bartlett, M. M. Kirchhoff and
T. C. Williamson, Catal. Today, 2000, 55, 11–22.
Y. Feng, B. He, Y. Cao, J. Li, M. Liu, F. Yan and X. Liang,
Bioresour. Technol., 2010, 101, 1518–1521.
the increased cooperative effect and strength of sulfonic acid
3 3
groups in PrSO H/SBA-15-200, as earlier indicated by NH TPD
1
and δ H in NMR. Indeed the inset to Fig. 2 shows a strong cor-
relation between TOF for tripalmitin transesterification and
1
1
1
1
1
1
1
1
1
1
0 J. Dhainaut, J.-P. Dacquin, A. F. Lee and K. Wilson, Green
δ H shift. Fig. S13† shows that PrSO
3
H/SBA-15-200 also out
Chem., 2010, 12, 296–303.
performs both one-pot sulfonic acids and Amberlyst-15 in
palmitic acid esterification, while showing a two-fold increase
in reaction rate compared to grafted catalysts. Palmitic acid
conversions of 97% observed after 24 h are particularly
1 J. P. Dacquin, A. F. Lee, C. Pirez and K. Wilson, Chem.
Commun., 2012, 48, 212–214.
2 C. Pirez, J.-M. Caderon, J.-P. Dacquin, A. F. Lee and
K. Wilson, ACS Catal., 2012, 2, 1607–1614.
3 J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias and
R. Sánchez-Vázquez, Chem. Eng. J., 2010, 161, 323–331.
4 K. Wilson, A. F. Lee, D. J. Macquarrie and J. H. Clark, Appl.
Catal., A, 2002, 228, 127–133.
5 F. Zhang, Yan, H. Yang, Meng, Y. Y. Meng, C. Yu, B. Tu and
D. Zhao, J. Phys. Chem. B, 2005, 109, 8723–8732.
6 J. P. Icenhower and P. M. Dove, Geochim. Cosmochim. Acta,
impressive given only 2 wt% PrSO H/SBA-15-200 was employed:
3
for comparable conditions in the literature, acid resin loadings
>
20 wt% are typically reported as required to achieve 85% con-
9
version of FFA in waste oil.
In summary, HSPG offers a new route to produce high
loaded sulfonic acid silicas, increasing the acid site loading
five-fold over conventional methods. Enhanced acidic pro-
perties lead to a versatile catalyst with superior performance in
TAG and FFA transformations. Future work will investigate the
use of HSPG on interconnected and larger pore template
silicas such as KIT-6 and hierarchical macro–mesoporous sup-
ports, shown to reduce diffusion limitations in esterification
2000, 64, 4193–4203.
7 W. M. Van Rhijn, D. E. De Vos, B. F. Sels and W. D. Bossaert,
Chem. Commun., 1998, 317–318.
8 S.-Y. Chen, T. Yokoi, C.-Y. Tang, L.-Y. Jang, T. Tatsumi,
J. C. C. Chan and S. Cheng, Green Chem., 2011, 13, 2920–
1
0–12
and transesterification reactions,
improving the potential
2
930.
9 G. Ye, N. Janzen and G. R. Goward, Macromolecules, 2006,
9, 3283–3290.
0 G. Morales, G. Athens, B. F. Chmelka, R. van Grieken and
J. A. Melero, J. Catal., 2008, 254, 205–217.
1 A. Simperler, R. G. Bell and M. W. Anderson, J. Phys. Chem.
B, 2004, 108, 7142–7151.
2 R. Kanthasamy, I. K. Mbaraka, B. H. Shanks and
S. C. Larsen, Appl. Magn. Reson., 2007, 32, 513–526.
3 I. K. Mbaraka and B. H. Shanks, J. Catal., 2006, 244, 78–85.
for commercial implementation of more complex preformed
architectures. The use of such materials in intensive reactors
1
2
2
2
2
2
8
3
such as oscillatory baffled continuous flow reactors will also
be explored. In addition these methods could prove valuable
for derivatisation of magnetically separable nanoparticulate
2
9,30
catalysts with high sulfonic acid loadings.
Acknowledgements
We thank the EPSRC (EP/K000616/2, EP/K000616/2 and EP/ 24 J.-P. Dacquin, H. E. Cross, D. R. Brown, T. Duren,
G007594/4) for financial support and a Leadership Fellowship
AFL), and the Royal Society for the award of an Industry
J. J. Williams, A. F. Lee and K. Wilson, Green Chem., 2010,
12, 1383–1391.
(
4508 | Green Chem., 2014, 16, 4506–4509
This journal is © The Royal Society of Chemistry 2014