Communication
Catalysis Science & Technology
4 (a) R. A. Grey, G. P. Pez, A. Wallo and J. Corsi, J. Chem. Soc.,
Chem. Commun., 1980, 783; (b) R. A. Grey, G. P. Pez and A.
Wallo, J. Am. Chem. Soc., 1981, 103, 7536; (c) T. Li, I.
Bergner, F. N. Haque, M. Zimmer-De Iuliis, D. Song and
R. H. Morris, Organometallics, 2007, 26, 5940; (d) S.
Enthaler, D. Addis, K. Junge, G. Erre and M. Beller, Chem. –
Eur. J., 2008, 14, 9491; (e) S. Enthaler, K. Junge, D. Addis, G.
Erre and M. Beller, ChemSusChem, 2008, 1, 1006; ( f ) D.
Addis, S. Enthaler, K. Junge, B. Wendt and M. Beller,
Tetrahedron Lett., 2009, 50, 3654; (g) R. Reguillo, M. Grellier,
N. Vautravers, L. Vendier and S. Sabo-Etienne, J. Am. Chem.
Soc., 2010, 132, 7854; (h) C. Gunanathan, M. Hölscher and
W. Leitner, Eur. J. Inorg. Chem., 2011, 3381; (i) S.
Werkmeister, K. Junge, B. Wendt, A. Spannenberg, H. Jiao,
C. Bornschein and M. Beller, Chem. – Eur. J., 2014, 20, 427;
( j) J.-H. Choi and M. H. G. Prechtl, ChemCatChem, 2015, 7,
1023; (k) J. Neumann, C. Bornschein, H. Jiao, K. Junge and
M. Beller, Eur. J. Org. Chem., 2015, 5944.
Scheme
regeneration.
4 Mechanism for nitrile hydrogenation and catalyst
experiment reveals that the optimal conditions should be
able to overcome the barrier of catalyst 2A effectively. Obvi-
ously, the observed differences in reactivity among catalysts
1A–3A are stronger influenced by the lower stability of cata-
lyst 3A then by kinetic effects. This assumption is supported
by the vanished reactivity at low catalyst loading (Scheme 2).
In conclusion, the synthesis and application of the new
iron PNP pincer complex 2 is presented. This catalyst al-
lows for the selective hydrogenation of aromatic, aliphatic
and heterocyclic nitriles including adipodinitrile to pri-
mary amines under mild conditions requiring no additive
(base).
5 K. Junge, B. Wendt, H. Jiao and M. Beller, ChemCatChem,
2014, 6, 2810.
6 T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Chem.
Commun., 1979, 870.
7 K. Rajesh, B. Dudle, O. Blacque and H. Berke, Adv. Synth.
Catal., 2011, 353, 1479.
8 S. Chakraborty and H. Berke, ACS Catal., 2014, 4, 2191.
9 C. Bornschein, S. Werkmeister, B. Wendt, H. Jiao, E.
Alberico, W. Baumann, H. Junge, K. Junge and M. Beller,
Nat. Commun., 2014, 5, 4111.
Acknowledgements
We thank B. Wendt, Dr. C. Fischer, S. Schareina and S.
Buchholz (all at the LIKAT) for their excellent support. This
work was supported by F. Hoffmann-La Roche Ltd.
10 (a) E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H.-J.
Drexler, H. Junge and M. Beller, Angew. Chem., Int. Ed.,
2013, 52, 14162; (b) I. Koehne, T. J. Schmeier, E. A. Bielinski,
C. J. Pan, P. O. Lagaditis, W. H. Bernskoetter, M. K. Takase,
C. Würtele, N. Hazari and S. Schneider, Inorg. Chem.,
2014, 53, 6066; (c) S. Werkmeister, K. Junge, B. Wendt, E.
Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou and M.
Beller, Angew. Chem., Int. Ed., 2014, 53, 8722; (d) S.
Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather,
M. S. Gibson, J. A. Krause and H. Guan, J. Am. Chem. Soc.,
2014, 136, 7896; (e) S. Chakraborty, W. W. Brennessel and
W. D. Jones, J. Am. Chem. Soc., 2014, 136, 8564; ( f ) E. A.
Bielinski, P. O. Lagaditis, Y. Zhang, B. Q. Mercado, C.
Würtele, W. H. Bernskoetter, N. Hazari and S. Schneider,
J. Am. Chem. Soc., 2014, 136, 10234; (g) M. Pena-Lopez, H.
Neumann and M. Beller, ChemCatChem, 2015, 7, 865; (h) R.
Xu, S. Chakraborty, S. M. Bellows, H. Yuan, T. R. Cundari
and W. D. Jones, ACS Catal., 2016, 6, 2127; (i) S. Elangovan,
B. Wendt, C. Topf, S. Bachmann, M. Scalone, A.
Spannenberg, H. Jiao, W. Baumann, K. Junge and M. Beller,
Adv. Synth. Catal., 2016, 358, 820.
Notes and references
‡ Catalytic procedure: catalytic transformations were performed in a 300 mL au-
toclave equipped with an internal aluminum plate to include seven uniform re-
action glass vials (4 mL) sealed with cap, septum and needle. The autoclave was
placed into an aluminum block as the heating system to perform the reactions.
General procedure: in a reaction vial (4 mL), iron complex 2 (0.01 mmol) was
mixed with 2 mL of iso-propanol (degassed). After a short time of stirring, the
nitrile (1 mmol) was added under argon. The vial was placed into the alloy plate
in the autoclave. The apparatus was purged three times with hydrogen, pressur-
ized to 30 bar H2, and stirred for 3 h at 70 or 100 °C. Afterwards, the autoclave
was cooled to room temperature, depressurized, hexadecane was added as an
internal standard and the reaction mixture was analysed by GC. Isolated HCl
salts were analysed by NMR, GC-MS and HRMS.
1 Amines: Synthesis, Properties and Application, ed. S. A.
Lawrence, Cambridge University Press, Cambridge, 2004.
2 (a) J. Seyden-Penne, Reduction by Alumino- and Borohydrides
in Organic Synthesis, Wiley, New York, 1997; (b) P. G.
Anderson and I. J. Munslow, Modern Reduction Methods,
Wiley-VCH, Weinheim, 2008.
3 For recent reviews highlighting the reduction of nitriles, see:
(a) S. Werkmeister, K. Junge and M. Beller, Org. Process Res.
Dev., 2014, 18, 289; (b) D. B. Bagal and B. M. Bhanage, Adv.
Synth. Catal., 2015, 357, 883; (c) D. S. Mérel, M. L. T. Do, S.
Gaillard, P. Dupau and J.-L. Renaud, Coord. Chem. Rev.,
2015, 288, 50.
11 For recent reviews on pincer-catalysts, see: (a) T. Zell and D.
Milstein, Acc. Chem. Res., 2015, 48, 1979; (b) S. Werkmeister,
J. Neumann, K. Junge and M. Beller, Chem. – Eur. J.,
2015, 21, 12226.
12 (a) G. Zhang, B. L. Scott and S. K. Hanson, Angew. Chem.,
Int. Ed., 2013, 51, 12102; (b) P. O. Lagalitis, P. E. Sue, J. F.
Sonnenberg, K. Y. Wan, A. J. Lough and R. H. Morris, J. Am.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2016