10 T. Yamamoto, T. Hatsui, T. Matsuyama, T. Tanaka and T.
Funabiki, Chem. Mater., 2003, 15, 4830.
S. Yamamoto, Y. Yamaguchi, S. Nakamura and S. Hashimoto,
Tetrahedron, 2003, 59, 7307.
11 H. Sasai, T. Arai, Y. Satow, K. N. Houk and M. Shibasaki, J.
Am. Chem. Soc., 1995, 117, 6194.
31 M. Shibasaki, H. Sasai and T. Arai, Angew. Chem., Int. Ed. Engl.,
1997, 36, 1236.
12 (a) M. E. Jung, in Comprehensive Organic Synthesis, ed. B. M.
Trost and I. Fleming, Vol. 4, Pergamon, Oxford, 1991, p. 1; (b)
T.-L. Ho, Tactics of Organic Synthesis, Wiley, New York, 1994.
13 H. O. House, Modern Synthetic Reactions, 2nd edn., Benjamin,
Menlo Park, Calif, 1972, p. 595.
14 (a) S. Pelzer, T. Kauf, C. van Wullen and J. Christoffers,
J. Organomet. Chem., 2003, 684, 308; (b) For an excellent review
on transition metal-catalyzed Michael reaction of 1,3-dicarbo-
nyls, see: J. Christoffers, Eur. J. Org. Chem., 1998, 1259.
15 (a) E. Keller and B. L. Feringa, Tetrahedron Lett., 1996, 37, 1879;
(b) H. Kotsuki and K. Arimura, Tetrahedron Lett., 1997, 38,
7583; (c) Y. Mori, K. Kakumoto, K. Manabe and S. Kobayashi,
Tetrahedron Lett., 2000, 41, 3107.
16 M. Zahouily, Y. Abrouki, B. Bahlaouan, A. Rayadh and S. Sebti,
Catal. Commun., 2003, 4, 521.
17 M. Zahouily, Y. Abrouki, A. Rayadh, S. Sebti, H. Dhimane and
M. David, Tetrahedron Lett., 2003, 44, 2463.
18 J. Christoffers, Chem. Commun., 1997, 943.
19 A. C. Coda, G. Desimoni, P. Righetti and G. Tacconi, Gazz.
Chim. Ital., 1984, 114, 417.
20 The pKa values of other 1,3-dicarbonyl componds are as follows:
1a (10.5), 1b (11.5), 1c (7.8), 1d (10.1), and 1e (9.0).
32 (a) S. Matsunaga, T. Ohshima and M. Shibasaki, Tetrahedron
Lett., 2000, 41, 8473; (b) T. Arai, Q.-S. Hu, A.-F. Zheng, L. Pu
and H. Sasai, Org. Lett., 2000, 2, 4261; (c) T. Sekiguti, Y. Lizuka,
S. Takizawa, D. Jayaprakash, T. Arai and H. Sasai, Org. Lett.,
2003, 5, 2647; (d) Y. Hamashima, H. Takano, D. Hotta and M.
Sodeoka, Org. Lett., 2003, 5, 3225; (e) S. Takizawa, H. Somei, D.
Jayaprakash and H. Sasai, Angew. Chem., Int. Ed., 2003, 42, 5711.
33 (a) N. Kobayashi and K. Iwai, J. Am. Chem. Soc., 1978, 100,
7071; (b) M. Inagaki, J. Hiratake, Y. Yamamoto and J. Oda, Bull.
Chem. Soc. Jpn., 1987, 60, 4121; (c) R. Alvarez, M.-A. Hourdin,
C. Cave, J. d’Angelo and P. Chaminade, Tetrahedron Lett., 1999,
40, 7091.
34 B. M. Choudary, B. Kavita, N. S. Chowdari, B. Sreedhar and M.
L. Kantam, Catal. Lett., 2002, 78, 373.
35 A. Corma, S. Iborra, I. Rodrıguez, M. Iglesias and F. Sanchez,
Catal. Lett., 2002, 82, 237.
36 For recent reviews of heterogeneous asymmetric catalysts, see: (a)
P. McMorn and G. J. Hutchings, Chem. Soc. Rev., 200433, 108;
(b) C. E. Song and S.-G. Lee, Chem. Rev., 2002, 102, 3495.
37 It was reported that higher enantioselectivity could be attained
with other catalytic systems than that of the present TA-LaFAP
catalysts, such as polymer-supported cinchona alkaloids (87%
ee),33c cinchona alkaloids (76% ee),27b and chiral diamine Rh
21 M. Bauer, T. Kauf, J. Christoffers and H. Bertagnolli, Phys.
Chem. Chem. Phys., 2005, 7, 2664.
complex (75% ee).30e
.
22 J.-I. Tateiwa and A. Hosomi, Eur. J. Org. Chem., 2001, 1445.
23 (a) H. Hattori, Appl. Catal. A, 2001, 222, 247; (b) Y. Ono, J.
Catal., 2003, 216, 406.
38 H. Kotsuki, A. Sugino, H. Sakai and H. Yasuoka, Heterocycles,
2000, 53, 2561.
39 The existence of the hydroxyl group on the HAP surface was
confirmed by UV-Vis spectroscopy. HAP was added to a toluene
solution of aminopropyltriethoxysilane (APTS) and stirred at 50
1C for 2 h. After filtration and drying under vacuum, fluorescein
isothiocyanate (FITC) hydrochloride was attached to the APTS-
modified HAP in methanol solution. The UV-Vis spectrum of the
FITC-modified HAP exbited the charge-transfer band at 460 nm,
whereas the FAP modified by the same procedure did not show
any absorption band in this region. The detailed procedure is
described elsewhere, see: S. Ikeda, H. Nur, T. Sawadaishi, K.
Ijiro, M. Shimomura and Ohtani, Langmuir, 2001, 17, 7976.
40 K. Sakthivel, W. Notz, T. Bui and C. F. Barbas III, J. Am. Chem.
Soc., 2001, 123, 5260.
41 The use of La(NO)3 ꢂ 6H2O and LaCl3 ꢂ 7H2O as metal precursors
instead of La(OTf)3 decreased both chemical and optical yields;
La(NO)3 ꢂ 6H2O (77% yield, 55% ee), LaCl3 ꢂ 7H2O (59% yield,
44% ee).
42 Size effects of rare earth metals on enantioselectivity have been
observed in asymmetric reactions. For example: (a) H. Sasai, T.
Suzuki, N. Itoh and S. Arai, Tetrahedron Lett., 1993, 34, 2657; (b)
D. A. Evans, S. G. Nelson, M. R. Gagne and A. R. Muci, J. Am.
Chem. Soc., 1993, 115, 9800; (c) S. E. Schaus and E. N. Jacobsen,
Org. Lett., 2000, 2, 1001; (d) T. Hamada, K. Manabe, S.
Ishikawa, S. Nagayama, M. Shiro and S. Kobayashi, J. Am.
Chem. Soc., 2003, 125, 2989.
24 Because of the weak Lewis acidity of the La3+ ion, homogeneous
La(OR)3 complexes often act as a Brønsted base and catalyze a
number of carbonyl reactions involving an enolate intermediate,
see: (a) H. Sasai, T. Suzuki, S. Arai, T. Arai and M. Shibasaki, J.
Am. Chem. Soc., 1992, 114, 4418; (b) H. Sasai, T. Arai and M.
Shibasaki, J. Am. Chem. Soc., 1994, 116, 1571; (c) T. Dewa, T.
Saiki and Y. Aoyama, J. Am. Chem. Soc., 2001, 123, 502.
25 (a) T. Kawabata, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am.
Chem. Soc., 2003, 125, 10486; (b) T. Kawabata, M. Kato, T.
Mizugaki, K. Ebitani and K. Kaneda, Chem. Eur. J., 2005, 11,
288.
26 For general reviews of catalytic asymmetric Michael reactions,
see: (a) E. N. Jacobsen, in Comprehensive Asymmetric Catalysis,
ed. E. N. Jacobsen, A.Pfaltz and H. Yamamoto, Springer, Berlin,
1999; (b) N. Krause and A. Hoffmann-Roder, Synthesis, 2001,
171; (c) M. P. Sibi and S. Manyem, Tetrahedron, 2000, 56, 8033.
27 (a) H. Wynberg and R. Helder, Tetrahedron Lett., 1975, 31, 4057;
(b) K. Hermann and H. Wynberg, J. Org. Chem., 1979, 44, 2238.
28 Y. Tamai, A. Kamifuku, E. Koshiishi and S. Miyano, Chem.
Lett., 1995, 957.
29 D. J. Cram and G. D. J. Sogah, J. Chem. Soc., Chem. Commun.,
1981, 625.
30 (a) H. Brunner and H. Benedikt, Angew. Chem., Int. Ed. Engl.,
1984, 23, 312; (b) G. Desimoni, P. Quadrelli and P. P. Righetti,
Tetrahedron, 1990, 46, 2927; (c) C. Botteghi, S. Paganelli, A.
Schionato, C. Boga and A. Fava, J. Mol. Catal., 1991, 66, 7; (d)
M. Sawamura, H. Hamashima and Y. Ito, J. Am. Chem. Soc.,
1992, 114, 8295; (e) T. Suzuki and T. Torii, Tetrahedron: Asym-
metry, 2001, 12, 1077; (f) Y. Hamashima, D. Hotta and M.
Sodeoka, J. Am. Chem. Soc., 2002, 124, 11240; (g) M. Nakajima,
43 I. W. C. E. Arends and R. A. Sheldon, Appl. Catal. A, 2001, 212,
175.
44 K. V. Emelen, T. D. Wit, G. J. Hoornaert and F. Compernolle,
Tetrahedron Lett., 2002, 58, 4225.
45 T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S.
Yoshida, J. Chem. Soc., Faraday Trans., 1988, 84, 2987.
ꢀc
This journal is the Royal Society of Chemistry the Centre National de la Recherche Scientifique 2006
52 | New J. Chem., 2006, 30, 44–52