Organometallics
Article
Mau, Y. S.; Cheng, Q.; Collins, P. J.; Nayak, M. K.; Schirra, H. J.;
Hilliard, M. A.; Ebert, P. R. A core metabolic enzyme mediates
resistance to phosphine gas. Science 2012, 338, 807−810. (b) Nath, N.
S.; Bhattacharya, I.; Tuck, A. G.; Schlipalius, D. I.; Ebert, P. R.
Mechanisms of phosphine toxicity. J. Toxicol. 2011, 2011, 1−9.
(c) Hoerlein, G. Glufosinate (phosphinothricin), a natural amino acid
with unexpected herbicidal properties. In Reviews of environmental
contamination and toxicology: Continuation of residue reviews; Ware, G.
W., Ed.; Springer New York: New York, NY, 1994; pp 73−145.
(4) (a) Minton, N. A.; Murray, V. S. G. A review of organo-
phosphate poisoning. Med. Toxicol. Adverse Drug Exp. 1988, 3, 350−
375. (b) Millard, C. B.; Broomfield, C. A. Anticholinesterases:
Medical applications of neurochemical principles. J. Neurochem. 1995,
64, 1909−1918.
(5) (a) Joseph, P.; Tretsiakova-Mcnally, S. Reactive modifications of
some chain- and step-growth polymers with phosphorus-containing
compounds: Effects on flame retardancea review. Polym. Adv.
Technol. 2011, 22, 395−406. (b) Shameem, M. A.; Orthaber, A.
Organophosphorus compounds in organic electronics. Chem. - Eur. J.
2016, 22, 10718−10735. (c) Kumar, P.; Kim, K.-H.; Deep, A. Recent
advancements in sensing techniques based on functional materials for
organophosphate pesticides. Biosens. Bioelectron. 2015, 70, 469−481.
(d) Fave, C.; Cho, T.-Y.; Hissler, M.; Chen, C.-W.; Luh, T.-Y.; Wu,
(9) Kaabak, L. V.; Kuz’mina, N. E.; Khudenko, A. V.; Tomilov, A. P.
Improved synthesis of 1-aminoethylidenediphosphonic acid. Russ. J.
Gen. Chem. 2006, 76, 1673−1674.
(10) (a) Sutra, P.; Igau, A. Anionic phosph(in)ito (“phosphoryl”)
ligands: Non-classical “actor” phosphane-type ligands in coordination
chemistry. Coord. Chem. Rev. 2016, 308, 97−116. (b) Grushin, V. V.
Mixed phosphine-phosphine oxide ligands. Chem. Rev. 2004, 104,
1629−1662. (c) Shaikh, T. M.; Weng, C.-M.; Hong, F.-E. Secondary
phosphine oxides: Versatile ligands in transition metal-catalyzed cross-
coupling reactions. Coord. Chem. Rev. 2012, 256, 771−803.
(d) Moteki, S. A.; Wu, D.; Chandra, K. L.; Reddy, D. S.; Takacs, J.
M. TADDOL-Derived phosphites and phosphoramidites for efficient
rhodium-catalyzed asymmetric hydroboration. Org. Lett. 2006, 8,
3097−3100. (e) Green, J. R. Zoledronic acid: Pharmacologic profile
of a potent bisphosphonate. J. Organomet. Chem. 2005, 690, 2439−
2448.
(11) (a) Schwan, A. L. Palladium catalyzed cross-coupling reactions
for phosphorus−carbon bond formation. Chem. Soc. Rev. 2004, 33,
218−224. (b) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L.
Review on modern advances of chemical methods for the
introduction of a phosphonic acid group. Chem. Rev. 2011, 111,
7981−8006. (c) Montchamp, J.-L. Phosphinate chemistry in the 21st
century: A viable alternative to the use of phosphorus trichloride in
organophosphorus synthesis. Acc. Chem. Res. 2014, 47, 77−87.
(d) Tappe, F. M.; Trepohl, V. T.; Oestreich, M. Transition-metal-
catalyzed CP cross-coupling reactions. Synthesis 2010, 2010, 3037−
3062. (e) Baillie, C.; Xiao, J. Catalytic synthesis of phosphines and
related compounds. Curr. Org. Chem. 2003, 7, 477−514. (f) Xu, Q.;
Han, L.-B. Metal-catalyzed additions of H−P (O) bonds to carbon−
carbon unsaturated bonds. J. Organomet. Chem. 2011, 696, 130−140.
(g) Chen, T.; Zhang, J.-S.; Han, L.-B. Dehydrogenative coupling
involving P (O)−H bonds: A powerful way for the preparation of
phosphoryl compounds. Dalton Trans 2016, 45, 1843−1849.
(h) Chen, T.; Han, L.-B. Optically active H-phosphinates and their
stereospecific transformations into optically active P-stereogenic
organophosphoryl compounds. Synlett 2015, 26, 1153−1163.
(i) Bange, C. A.; Waterman, R. Challenges in catalytic hydro-
phosphination. Chem. - Eur. J. 2016, 22, 12598−12605. (j) Waterman,
R. Mechanisms of metal-catalyzed dehydrocoupling reactions. Chem.
Soc. Rev. 2013, 42, 5629−5641.
́
C.-C.; Reau, R. First examples of organophosphorus-containing
materials for light-emitting diodes. J. Am. Chem. Soc. 2003, 125,
9254−9255. (e) Dale, T. J.; Rebek, J. Fluorescent sensors for
organophosphorus nerve agent mimics. J. Am. Chem. Soc. 2006, 128,
4500−4501.
̂
(6) (a) Leca, D.; Fensterbank, L.; Lacote, E.; Malacria, M. Recent
advances in the use of phosphorus-centered radicals in organic
chemistry. Chem. Soc. Rev. 2005, 34, 858−865. (b) Wen, L.-L.; Wang,
F.; Leng, X.-K.; Wang, C.-G.; Wang, L.-Y.; Gong, J.-M.; Li, D.-F.
Efficient detection of organophosphate pesticide based on a metal-
organic framework derived from biphenyltetracarboxylic acid. Cryst.
́
Growth Des. 2010, 10, 2835−2838. (c) Guino, M.; Hii, K. K.
Applications of phosphine-functionalised polymers in organic syn-
thesis. Chem. Soc. Rev. 2007, 36, 608−617. (d) Murugavel, R.;
Choudhury, A.; Walawalkar, M. G.; Pothiraja, R.; Rao, C. N. R. Metal
complexes of organophosphate esters and open-framework metal
phosphates: Synthesis, structure, transformations, and applications.
Chem. Rev. 2008, 108, 3549−3655. (e) Stephan, D. W. Zirconium−
phosphorus chemistry: Strategies in syntheses, reactivity, catalysis, and
utility. Angew. Chem., Int. Ed. 2000, 39, 314−329. (f) Glueck, D. S.
Metal-catalyzed asymmetric synthesis of p-stereogenic phosphines.
Synlett 2007, 2007, 2627−2634.
(12) (a) Arbuzov, B. A. Michaelis−Arbusow-und Perkow-Reaktio-
nen. Pure Appl. Chem. 1964, 9, 307−336. (b) Bhattacharya, A. K.;
Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev. 1981,
81, 415−430.
(13) (a) Coudray, L.; Montchamp, J.-L. Recent developments in the
addition of phosphinylidene-containing compounds to unactivated
unsaturated hydrocarbons: Phosphorus−carbon bond formation by
hydrophosphinylation and related processes. Eur. J. Org. Chem. 2008,
2008, 3601−3613. (b) Han, L.-B.; Tanaka, M. Palladium-catalyzed
hydrophosphorylation of alkynes via oxidative addition of HP(O)-
(OR)2. J. Am. Chem. Soc. 1996, 118, 1571−1572. (c) Chen, T.; Zhao,
C.-Q.; Han, L.-B. Hydrophosphorylation of alkynes catalyzed by
palladium: generality and mechanism. J. Am. Chem. Soc. 2018, 140,
3139−3155. (d) Kosolapoff, G. M.; Maier, L. Organic phosphorus
compounds; Wiley: New York, NY, 1973; Vol. 5, pp 1−329.
(e) Goldwhite, H. Introduction to phosphorous chemistry; Cambridge
University Press; Cambridge, U.K., 1981; CUP Archive. (f) Semenzin,
D.; Etemad-Moghadam, G.; Albouy, D.; Diallo, O.; Koenig, M. Dual
radical/polar pudovik reaction: Application field of new activation
methods. J. Org. Chem. 1997, 62, 2414−2422. (g) Han, L.-B.; Zhao,
C.-Q. Stereospecific addition of H-P bond to alkenes: A simple
method for the preparation of (RP)-phenylphosphinates. J. Org.
Chem. 2005, 70, 10121−10123. (h) Bunlaksananusorn, T.; Knochel,
P. t-BuOK-catalyzed addition phosphines to functionalized alkenes: A
convenient synthesis of polyfunctional phosphine derivatives.
Tetrahedron Lett. 2002, 43, 5817−5819. (i) Mimeau, D.; Gaumont,
A.-C. Regio- and stereoselective hydrophosphination reactions of
alkynes with phosphine-boranes: Access to stereodefined vinyl-
phosphine derivatives. J. Org. Chem. 2003, 68, 7016−7022.
(7) (a) Lam, K. H.; Gambari, R.; Yuen, M. C. W.; Kan, C. W.; Chan,
P.; Xu, L.; Tang, W.; Chui, C. H.; Cheng, G. Y. M.; Wong, R. S. M.;
Lau, F. Y.; Tong, C. S. W.; Chan, A. K. W.; Lai, P. B. S.; Kok, S. H. L.;
Cheng, C. H.; Chan, A. S. C.; Tang, J. C. O. The preparation of 2,6-
disubstituted pyridinyl phosphine oxides as novel anti-cancer agents.
Bioorg. Med. Chem. Lett. 2009, 19, 2266−2269. (b) Szajnman, S. H.;
Ravaschino, E. L.; Docampo, R.; Rodriguez, J. B. Synthesis and
biological evaluation of 1-amino-1,1-bisphosphonates derived from
fatty acids against trypanosoma cruzi targeting farnesyl pyrophosphate
synthase. Bioorg. Med. Chem. Lett. 2005, 15, 4685−4690.
(8) (a) Ansell, J.; Wills, M. Enantioselective catalysis using
phosphorus-donor ligands containing two or three P−N or P−O
bonds. Chem. Soc. Rev. 2002, 31, 259−268. (b) Caminade, A.-M.;
Maraval, V.; Laurent, R.; Majoral, J.-P. Organometallic derivatives of
phosphorus-containing dendrimers. Synthesis, properties and appli-
cations in catalysis. Curr. Org. Chem. 2002, 6, 739−774. (c) Xie, J.-H.;
Zhou, Q.-L. Chiral diphosphine and monodentate phosphorus ligands
on a spiro scaffold for transition-metal-catalyzed asymmetric
reactions. Acc. Chem. Res. 2008, 41, 581−593. (d) Cornils, B.;
Herrmann, W. A.; Beller, M.; Paciello, R. Applied homogeneous
catalysis with organometallic compounds: A comprehensive handbook;
Wiley: Weinheim, Germany, 2017; Vol. 4.
I
Organometallics XXXX, XXX, XXX−XXX