ORGANIC
LETTERS
2003
Vol. 5, No. 6
803-805
Copper(I)-Promoted Palladium-Catalyzed
Cross-Coupling of Unsaturated
Tri-n-butylstannane with Heteroaromatic
Thioether
France-Aime´e Alphonse,†,‡ Franck Suzenet,† Anne Keromnes,‡ Bruno Lebret,‡ and
,†
Ge´rald Guillaumet*
Institut de Chimie Organique et Analytique, UMR-CNRS 6005,
UniVersite´ d’Orle´ans, rue de Chartres, BP 6759, 45067 Orle´ans Cedex 2, France, and
Commissariat a` l’Energie Atomique, CEA/Le Ripault, B.P.16, 37260 Monts, France
gerald.guillaumet@uniV-orleans.fr
Received December 12, 2002
ABSTRACT
Palladium-catalyzed cross-coupling of vinyl- and arylstannanes with π-electron-deficient heteroaromatics was performed in good yields. This
Stille-type reaction was carried out with a methylthioether function as an electrophile in the presence of a copper(I) bromide-dimethyl sulfide
complex.
The discovery of new, efficient methods for the construction
of carbon-carbon bonds represents an ongoing, central
theme of research in the area of organic synthesis. In this
context, the palladium-catalyzed cross-coupling of organo-
metallic reagents with aryl or vinyl halides and triflates has
become an attractive method.1 Unfortunately, halides or
triflates might be of limited availability and/or stability,
especially in the heteroaromatic series. Consequently, recent
reports have dealt with the discovery of new electrophiles
for this type of reaction:2 Liebeskind and Srogl have
developed a palladium-catalyzed boronic acid-thioether
cross-coupling protocol mediated by copper(I) carboxylate.3
Extension of this method has been reported for heteroaro-
matic derivatives.4
Considering the advantages of using trialkylorganotin
species [for example, they are readily available (especially
alkenyl and heteroaromatic stannanes)],5 we investigated a
(2) (a) Malleron, J.-L.; Fiaud, J.-C.; Legros, J.-Y. Handbook of Pal-
ladium-Catalysed Organic Reactions; Academic Press: London, 1997. (b)
Srogl, J.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1997, 119,
12376-12377. (c) Srogl, J.; Liu, W.; Marshall, D.; Liebeskind, L. S. J.
Am. Chem. Soc. 1999, 121, 9449-9450. (d) Darses, S.; Geneˆt, J.-P.; Brayer,
J.-L.; Demoute, J.-P. Tetrahedron Lett. 1997, 38, 4393-4396. (e) Kikukawa,
K.; Kono, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1983, 48, 1333-1336.
(f) Pridgen, L. N. J. Org. Chem. 1981, 46, 5402-5404.
(3) (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260-
11261. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91-
93. (c) Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149-2152. (d)
Kusturin, C. L.; Liebeskind, L. S.; Neumann, W. L. Org. Lett. 2002, 4,
983-985.
(4) (a) Alphonse, F.-A.; Suzenet, F.; Keromnes, A.; Lebret, B.; Guil-
laumet, G. Synlett 2002, 3, 447-450. (b) Liebeskind, L. S.; Srogl, J. Org.
Lett. 2002, 4, 979-981.
† Universite´ d’Orle´ans.
‡ Commissariat a` l’Energie Atomique, CEA/Le Ripault.
(1) For reviews, see: (a) Heck, R. F. Palladium Reagents in Organic
Synthesis; Academic Press: New York, 1985. (b) Tsuji, J. Palladium
Reagents and Catalysts: InnoVations in Organic Synthesis; Wiley & Sons:
New York, 1995. (c) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25,
508-524. (d) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483.
(e) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176-4211.
(f) Angiolelli, M. E.; Casalnuovo, A. L.; Selby, T. P. Synlett 2000, 6, 905-
907.
(5) (a) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis;
Butterworth: London, 1987. (b) Lee, A. S.-Y.; Dai, W.-C. Tetrahedron
1997, 53, 859-868 and references therein. (c) Smith, N. D.; Mancuso, J.;
Lautens, M. Chem. ReV. 2000, 100, 3257-3282.
10.1021/ol027453o CCC: $25.00 © 2003 American Chemical Society
Published on Web 02/19/2003