Bioconjugate Chemistry
Article
(15) Bassan, J., Willis, L. M., Vellanki, R. N., Nguyen, A., Edgar, L. J.,
Wouters, B. G., and Nitz, M. (2019) TePhe Paper. Proc. Natl. Acad.
Sci. U. S. A. 116, 8155−8160.
(16) Lumba, M. A., Willis, L. M., Santra, S., Rana, R., Schito, L., Rey,
S., Wouters, B. G., and Nitz, M. (2017) A β-Galactosidase Probe for
the Detection of Cellular Senescence by Mass Cytometry. Org.
Biomol. Chem. 15, 6388−6392.
(17) Pichaandi, J., Zhao, G., Bouzekri, A., Lu, E., Ornatsky, O.,
Baranov, V., Nitz, M., and Winnik, M. A. (2019) Lanthanide
Nanoparticles for High Sensitivity Multiparameter Single Cell
Analysis. Chem. Sci. 10, 2965−2974.
(18) Ponder, B. A., and Wilkinson, M. M. (1981) Inhibition of
Endogenous Tissue Alkaline Phosphatase with the Use of Alkaline
Phosphatase Conjugates in Immunohistochemistry. J. Histochem.
Cytochem. 29, 981−984.
ACKNOWLEDGMENTS
■
We thank T. Closson (Fluidigm) for assistance with IMC. We
are grateful to H. Soor (University of Toronto) for LCMS
experiments and to Bradly G. Wouters and Ravi N. Vellanki for
providing mounted tissue samples. This work was supported
by the Natural Sciences and Engineering Research Council,
Ontario Centres of Excellence and Fluidigm Canada.
REFERENCES
■
(1) Tanner, S. D., Bandura, D. R., Ornatsky, O., Baranov, V. I., Nitz,
M., and Winnik, M. A. (2008) Flow Cytometer with Mass
Spectrometer Detection for Massively Multiplexed Single-Cell
Biomarker Assay. Pure Appl. Chem. 80 (12), 2627−2641.
(19) Yam, L. T., Khansur, T., and Tavassoli, M. (1988) New
Developments in Immunochemistry with Immunoalkaline Phospha-
tase Methods. Pathol. Immunopathol. Res. 7, 169−186.
(20) Wang, Q., Dechert, U., Jirik, F., and Withers, S. G. (1994)
Suicide Inactivation of Human Prostatic Acid Phosphatase and a
Phosphotyrosine Phosphatase. Biochem. Biophys. Res. Commun. 200,
577−583.
(21) Loubinoux, B., Miazimbakana, J., and Gerardin, P. (1989)
Reactivity of New Precursors of Quinone Methides. Tetrahedron Lett.
30, 1939−1942.
(2) Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A.,
Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J. E., and Tanner, S.
D. (2009) Mass Cytometry: Technique for Real Time Single Cell
Multitarget Immunoassay Based on Inductively Coupled Plasma
Time-of-Flight Mass Spectrometry. Anal. Chem. 81 (16), 6813−6822.
(3) Ornatsky, O., Bandura, D., Baranov, V., Nitz, M., Winnik, M. A.,
and Tanner, S. (2010) Highly Multiparametric Analysis by Mass
Cytometry. J. Immunol. Methods 361, 1−20.
(4) Giesen, C., Wang, H. A. O., Schapiro, D., Zivanovic, N., Jacobs,
A., Hattendorf, B., Schuffler, P. J., Grolimund, D., Buhmann, J. M.,
̈
(22) Kumar, S., Zhou, B., Liang, F., Wang, W.-Q., Huang, Z., and
Zhang, Z.-Y. (2004) Activity-Based Probes for Protein Tyrosine
Phosphatases. Proc. Natl. Acad. Sci. U. S. A. 101, 7943−7948.
(23) Lo, L.-C., Pang, T.-L., Kuo, C.-H., Chiang, Y.-L., Wang, H.-Y.,
and Lin, J.-J. (2002) Design and Synthesis of Class-Selective Activity
Probes for Protein Tyrosine Phosphatases. J. Prot. Res. 1 (1), 35−40.
(24) Lo, L.-C., Chiang, Y.-L., Kuo, C.-H., Liao, H.-K., Chen, Y.-J.,
and Lin, J.-J. (2004) Study of the Preferred Modification Sites of the
Quinone Methide Intermediate Resulting from the Latent Trapping
Device of the Activity Probes for Hydrolases. Biochem. Biophys. Res.
Commun. 326 (1), 30−35.
(25) Chen, G. Y. J., Uttamchandani, M., Zhu, Q., Wang, G., and Yao,
S. Q. (2003) Developing a Strategy for Activity-Based Detection of
Enzymes in a Protein Microarray. ChemBioChem 4, 336−339.
(26) Zhu, Q., Huang, X., Chen, G. Y. J., and Yao, S. Q. (2003)
Activity-Based Fluorescent Probes That Target Phosphatases.
Tetrahedron Lett. 44, 2669−2672.
(27) Ahmed, V., Liu, Y., and Taylor, S. D. (2009) Multiple Pathways
for the Irreversible Inhibition of Steroid Sulfatase with Quinone
Methide-Generating Suicide Inhibitors. ChemBioChem 10, 1457−
1461.
(28) Polaske, N. W., Kelly, B. D., Ashworth-Sharpe, J., and Bieniarz,
C. (2016) Quinone Methide Signal Amplification: Covalent Reporter
Labeling of Cancer Epitopes Using Alkaline Phosphatase Substrates.
Bioconjugate Chem. 27, 660−666.
Brandt, S., et al. (2014) Highly Multiplexed Imaging of Tumor
Tissues with Subcellular Resolution by Mass Cytometry. Nat. Methods
11 (4), 417−422.
(5) Singh, M., Chaudhry, P., Gerdtsson, E., Maoz, A., Cozen, W.,
Hicks, J., Kuhn, P., Gruber, S., Siddiqui, I., and Merchant, A. (2017)
Highly Multiplexed Imaging Mass Cytometry Allows Visualization of
Tumor and Immune Cell Interactions of the Tumor Microenviron-
ment in FFPE Tissue Sections. Blood 130, 2751.
(6) Chang, Q., Ornatsky, O. I., Siddiqui, I., Straus, R., Baranov, V. I.,
and Hedley, D. W. (2016) Biodistribution of Cisplatin Revealed by
Imaging Mass Cytometry Identifies Extensive Collagen Binding in
Tumor and Normal Tissues. Sci. Rep. 6, 1−11.
(7) Schulz, D., Zanotelli, V. R. T., Fischer, J. R., Schapiro, D., Engler,
S., Lun, X., Jackson, H. W., and Bodenmiller, B. (2018) Simultaneous
Multiplexed Imaging of MRNA and Proteins with Subcellular
Resolution in Breast Cancer Tissue Samples by Mass Cytometry
Article Simultaneous Multiplexed Imaging of MRNA and Proteins
with Subcellular Resolution in Breast Cancer Tissue Samples b. Cell
Syst. 6 (1), 25−36.
(8) Bendall, S. C., Simonds, E. F., Qiu, P., Amir, E. D., Krutzik, P. O.,
Finck, R., Bruggner, R. V., Melamed, R., Trejo, A., Ornatsky, O. I.,
et al. (2011) Single-Cell Mass Cytometry of Differential Immune and
Drug Responses Across a Human Hematopoietic Continuum. Science
332 (6030), 687−696.
(9) Han, G., Chen, S. Y., Gonzalez, V. D., Zunder, E. R., Fantl, W. J.,
and Nolan, G. P. (2017) Atomic Mass Tag of Bismuth-209 for
Increasing the Immunoassay Multiplexing Capacity of Mass
Cytometry. Cytometry, Part A 91A, 1150−1163.
(10) Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J., and Nolan,
G. P. (2018) Metal-Isotope-Tagged Monoclonal Antibodies for High-
Dimensional Mass Cytometry. Nat. Protoc. 13, 2121−2148.
(11) Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J., and
Nolan, G. P. (2012) Single-Cell Mass Cytometry Adapted to
Measurements of the Cell Cycle. Cytometry, Part A 81A, 552−566.
(12) Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P., and
Bodenmiller, B. (2012) A Platinum-Based Covalent Viability Reagent
for Single-Cell Mass Cytometry. Cytometry, Part A 81A, 467−475.
(13) Park, H., Edgar, L. J., Lumba, M. A., Willis, L. M., and Nitz, M.
(2015) Organotellurium Scaffolds for Mass Cytometry Reagent
Development. Org. Biomol. Chem. 13, 7027−7033.
(29) Kwan, D. H., Chen, H.-M., Ratananikom, K., Hancock, S. M.,
Watanabe, Y., Kongsaeree, P. T., Samuels, A. L., and Withers, S. G.
(2011) Self-Immobilizing Fluorogenic Imaging Agents of Enzyme
Activity. Angew. Chem., Int. Ed. 50, 300−303.
(30) Lo, L.-C., Lo, C.-H. L., Janda, K. D., Kassel, D. B., and Raushel,
F. M. (1996) A Versatile Mechanism Based Reaction Probe for the
Direct Selection of Biocatalysts. Bioorg. Med. Chem. Lett. 6, 2117−
2120.
̈
̈
(31) Lenger, J., Schroder, M., Ennemann, E. C., Muller, B., Wong, C.
H., Noll, T., Dierks, T., Hanson, S. R., and Sewald, N. (2012)
Evaluation of Sulfatase-Directed Quinone Methide Traps for
Proteomics. Bioorg. Med. Chem. 20, 622−627.
(32) Seaman, M. E., and Kelly, K. A. S. (2013) Cancer Res. 73, 3891.
(33) Gutknecht, M. F., Seaman, M. E., Ning, B., Cornejo, D. A.,
Mugler, E., Antkowiak, P. F., Moskaluk, C. A., Hu, S., Epstein, F. H.,
and Kelly, K. A. (2017) Identification of the S100 Fused-Type Protein
Hornerin as a Regulator of Tumor Vascularity. Nat. Commun. 8, 552.
(34) McIntyre, A., Patiar, S., Wigfield, S., Li, J. -l., Ledaki, I., Turley,
H., Leek, R., Snell, C., Gatter, K., Sly, W. S., et al. (2012) Carbonic
(14) Edgar, L. J., Vellanki, R. N., McKee, T. D., Hedley, D., Wouters,
B. G., and Nitz, M. (2016) Isotopologous Organotellurium Probes
Reveal Dynamic Hypoxia In Vivo with Cellular Resolution. Angew.
Chem., Int. Ed. 55, 13159−13163.
E
Bioconjugate Chem. XXXX, XXX, XXX−XXX