Highly Selective Fluorescent Sensors for Hg2+ and Ag+
(9:1, v/v, 30 mL) was stirred vigorously at 70 °C for 18 h. The mix-
ture was extracted thrice (5 mLϫ3) with chloroform. The chloro-
form layer was dried with MgSO4 and the solvent was removed
under reduced pressure. The residue obtained was purified through
a silica gel column eluting with ethyl acetate/MeOH (30:1, v/v) to
percentage fluorescence changes for hosts 6–9 in CH3OH upon ad-
dition of various metal ions at 298 K (Table S1), fluorescence ti-
tration spectra for 6–9 with various amounts of Hg2+ and Ag+ in
CH3OH solution (Figures S9–S12), 1H NMR titrations of 6–9 in
the presence of various amounts of metal ions Hg2+ and Ag+ (Fig-
ures S13 and S14), percentage fluorescence changes for hosts 6–9
give 0.18 g (47%) of 7. Yellow oil; Rf = 0.18 (EtOAc/MeOH =
1
10:1). H NMR (CDCl3, 300 MHz): δ = 8.29 (d, J = 9.2 Hz, 2 H, (10 µ in CH3CN) upon addition of various metal ions (Table S2),
CHpyrene), 8.16–7.95 (m, 16 H, CHpyrene), 7.57 (s, 2 H, CH5-triazole), and fluorescence changes for hosts 6–9 upon addition of 15 metal
5.25 (s, 4 H, CpyreneCH2O), 4.76 (s, 4 H, OCH2C4-triazole), 4.32 (t, J ions (Figure S15).
= 5.0 Hz, 4 H, N1-triazoleCH2C), 3.57 (t, J = 5.0 Hz, 4 H, CCH2O),
3.28 (br. s, 8 H, OCH2CH2O) ppm. 13C NMR (CDCl3, 75.4 MHz):
δ = 144.7 (Cq), 131.3 (Cq), 131.1 (Cq), 130.9 (Cq), 130.7 (Cq), 129.4
Acknowledgments
(Cq), 127.7 (CH), 127.5 (CH), 127.3 (CH), 127.2 (CH), 125.9 (CH),
We thank the National Science Council (NSC), Taiwan and the
125.2 (CH), 125.2 (CH), 124.8 (Cq), 124.6 (Cq), 124.4 (CH), 123.8
MOE ATU Program of the Ministry of Education, Taiwan, Repub-
lic of China for financial support.
(CH), 123.4 (CH), 71.0 (CH2), 70.2 (CH2), 70.1 (CH2), 69.0 (CH2),
63.6 (CH2), 50.1 (CH2) ppm. HRMS (FAB): calcd. for C48H44N6O5
[M]+ 784.3373; found 784.3380.
[1] a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
1,14-Bis[4-(pyren-1-ylmethoxymethyl)-1H-1,2,3-triazole-1-yl]-
3,6,9,12-tetraoxatetradecane (8): A mixture of 1-[(prop-2-ynyloxy)-
methyl]pyrene (0.380 g, 1.42 mmol), 1,14-diazido-3,6,9,12-tetra-
oxatetradecane (0.20 g, 0.71 mmol), and CuI (about 5 mg,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice,
Chem. Rev. 1997, 97, 1515–1566; b) J.-P. Desvergne, A. W.
Czarnik in Chemosensors of Ion and Molecular Recognition,
Kluwer, Dordrecht, 1997; c) B. Valeur, I. Leray, Coord. Chem.
0.02 mmol) in THF and water (9:1, v/v, 30 mL) was stirred vigor-
ously at 70 °C for 18 h. The mixture was extracted thrice (5 mLϫ3)
with chloroform. The chloroform layer was dried with MgSO4 and
the solvent was removed under reduced pressure. The residue ob-
tained was purified through a silica gel column eluting with ethyl
acetate/MeOH (30:1, v/v) to give 0.26 g (45%) of 8. Yellow oil; Rf
= 0.2 (EtOAc/MeOH = 10:1). 1H NMR (CDCl3, 300 MHz): δ =
8.29 (d, J = 9.2 Hz, 2 H, CHpyrene), 8.15–7.94 (m, 16 H, CHpyrene),
7.65 (s, 2 H, CH5-triazole), 5.26 (s, 4 H, CpyreneCH2O), 4.78 (s, 4 H,
OCH2C4-triazole), 4.39 (t, J = 5.0 Hz, 4 H, N1-triazoleCH2C), 3.67 (t,
J = 5.0 Hz, 4 H, CCH2O), 3.38–3.30 (m, 12 H, OCH2CH2-
OCH2) ppm. 13C NMR (CDCl3, 75.4 MHz): δ = 144.8 (Cq), 131.2
(Cq), 131.1 (Cq), 130.9 (Cq), 130.7 (Cq), 129.3 (Cq), 127.7 (CH),
127.4 (CH), 127.3 (CH), 127.1 (CH), 125.9 (CH), 125.2 (CH), 125.2
(CH), 124.8 (Cq), 124.5 (Cq), 124.4 (CH), 123.9 (CH), 123.3 (CH),
70.9 (CH2), 70.2 (CH2), 70.2 (CH2), 70.1 (CH2), 69.1 (CH2), 63.6
(CH2), 50.1 (CH2) ppm. HRMS (FAB): calcd. for C50H48N6O6
[M]+ 828.3635; found 828.3615.
Rev. 2000, 205, 3–40; d) A. W. Czarnik (Ed.) in Fluorescent
Chemosensors for Ion and Molecule Recognition, American
Chemical Society, Washington, DC, 1993; e) B. Valeur, in: Mo-
lecular Fluorescence: Principles and Applications, Wiley-VCH,
Weinheim, 2002.
[2] a) H. H. Harris, I. Pickering, G. N. George, Science 2003, 301,
1203–1203; b) I. Onyido, A. R. Norris, E. Buncel, Chem. Rev.
2004, 104, 5911–5929.
[3] a) H. T. Ratte, Environ. Toxicol. Chem. 1999, 18, 89–108; b)
H. Q. Peng, B. W. Brooks, R. Chan, O. Chyan, T. W. L. Point,
Chemosphere 2002, 46, 1141–1146; c) M. R. Ganjali, P. Nor-
ouzi, T. Alizadeh, M. Adib, J. Braz. Chem. Soc. 2006, 17, 1217–
1222; d) X. B. Zhang, Z. X. Han, Z. H. Fang, G. L. Shen, R. Q.
Yu, Anal. Chim. Acta 2006, 562, 210–215.
[4] a) R.-H. Yang, W.-H. Chan, A. W. M. Lee, P.-F. Xia, H.-K.
Zhang, K. Li, J. Am. Chem. Soc. 2003, 125, 2884–2885; b) A.
Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2005, 127, 10464–
10465; c) L. Liu, D. Zhang, X. Zhang, J. Xiang, D. Zhu, Org.
Lett. 2008, 10, 2271–2274; d) M. Nolan, S. J. Lippard, Chem.
Rev. 2008, 108, 3443–3480; e) C.-S. Park, J.-Y. Lee, E.-J. Kung,
J.-E. Lee, S.-S. Lee, Tetrahedron Lett. 2009, 50, 671–675; f)
K. M. K. Swamy, H.-N. Kim, J.-H. Soh, Y. Kim, S.-J. Kim, J.
Yoon, Chem. Commun. 2009, 1234–1236; g) J. Kang, M. Choi,
J. Y. Kwon, E. Y. Lee, J. Yoon, J. Org. Chem. 2002, 67, 4384.
[5] L. Liu, G. Zhang, J. Xiang, D. Zhang, D. Zhu, Org. Lett. 2008,
10, 4581–4584.
[6] a) . F. M. Winnik, Chem. Rev. 1993, 93, 587–614; b) . Y. Suzuki,
T. Morozumi, H. Nakamura, M. Shimomura, T. Hayashita,
R. A. Bartsh, J. Phys. Chem. B 1998, 102, 7910–7917; c) J.-S.
Yang, C.-S. Lin, C.-Y. Hwang, Org. Lett. 2001, 3, 889–892; d)
J.-S. Kim, K.-H. Noh, S.-H. Lee, S.-K. Kim, S.-K. Kim, J.
Yoon, J. Org. Chem. 2003, 68, 597–600; e) H. Yuasa, N. Miya-
gawa, T. Izumi, M. Nakatani, M. Izumi, H. Hashimoto, Org.
Lett. 2004, 6, 1489–1492; f) Y. Shiraishi, Y. Tokitoh, T. Hirai,
Org. Lett. 2006, 8, 3841–3844; g) J. S. Kim, M. G. Choi, K. C.
Song, K. T. No, S. Ahn, S.-K. Chang, Org. Lett. 2007, 9, 1129–
1132; h) H.-C. Hung, C.-W. Cheng, I.-T. Ho, W.-S. Chung, Tet-
rahedron Lett. 2009, 50, 302–305.
1,17-Bis[4-(pyren-1-ylmethoxymethyl)-1H-1,2,3-triazole-1-yl]-
3,6,9,12,15-pentaoxaheptadecane (9): A mixture of 1-[(prop-2-ynyl-
oxy)methyl]pyrene (0.27 g, 1.0 mmol), 1,17-diazido-3,6,9,12,15-
pentaoxaheptadecane (0.17 g, 0.50 mmol), and CuI (about 5 mg,
0.02 mmol) in THF and water (9:1, v/v, 30 mL) was stirred vigor-
ously at 70 °C for 18 h. The mixture was extracted thrice (5 mLϫ3)
with chloroform. The chloroform layer was dried with MgSO4 and
the solvent was removed under reduced pressure. The residue ob-
tained was purified through a silica gel column eluting with ethyl
acetate/MeOH (30:1, v/v) to give 0.23 g (52%) of 9. Yellow oil; Rf
1
= 0.25 (EtOAc/MeOH = 10:1). H NMR (CDCl3, 300 MHz): δ =
8.30 (d, J = 9.2 Hz, 2 H, CHpyrene), 8.16–7.94 (m, 16 H, CHpyrene),
7.69 (s, 2 H, CH5-triazole), 5.27 (s, 4 H, CpyreneCH2O), 4.79 (s, 4 H,
OCH2C4-triazole), 4.43 (t, J = 5.0 Hz, 4 H, N1-triazoleCH2C), 3.72 (t,
J = 5.0 Hz, 4 H, CCH2O), 3.42–3.37 (m, 16 H, OCH2CH2OCH2-
CH2O) ppm. 13C NMR (CDCl3, 75.4 MHz): δ = 144.8 (Cq), 131.2
(Cq), 131.1 (Cq), 130.9 (Cq), 130.6 (Cq), 129.3 (Cq), 127.6 (CH),
127.3 (CH), 127.3 (CH), 127.1 (CH), 125.8 (CH), 125.1 (CH), 124.7
(Cq), 124.5 (Cq), 124.4 (CH), 123.9 (CH), 123.3 (CH), 70.8 (CH2),
70.3 (CH2), 70.2 (CH2), 70.2 (CH2), 70.1 (CH2), 69.2 (CH2), 63.6
(CH2), 50.1 (CH2) ppm. HRMS (FAB): calcd. for C52H52N6O7
[M]+ 872.3898; found 872.3889.
[7] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2001, 40, 2004–2021; b) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–
2599; c) L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Wil-
liams, K. B. Sharpless, J. Am. Chem. Soc. 2005, 127, 15998–
15999.
[8] For the coordination potential of triazoles, see: a) T. L. Mindt,
H. Struthers, L. Brans, T. Anguelov, C. Schweinsberg, V. Maes,
D. Tourwé, R. Schibli, J. Am. Chem. Soc. 2006, 128, 15096–
Supporting Information (see also the footnote on the first page of
this article): 1H and 13C NMR spectra for 6–9 (Figures S1–S8),
Eur. J. Org. Chem. 2009, 6360–6366
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6365