D.P.C. de Barros et al. / Catalysis Today 173 (2011) 95–102
101
P. Fernandes acknowledges Funda c¸ ão para a Ciência e Tecnolo-
gia (FCT) for contract under Programme Ciência 2007.
References
[
[
[
[
1] T. Mitsui, New Cosmetic science, Elsevier Science, Amsterdam, 1998.
2] H.E. Schoemaker, D. Mink, M.G. Wubbolts, Science 299 (2003) 1694–1697.
3] J. David Rozzell, Bioorg. Med. Chem. 7 (1999) 2253–2261.
4] U. Schoerken, C. Meyer, P. Horlacher, S. Both, United States Patent Application
20,070,148,746 (2007).
[5] Food and Drug Administration, US Code of Federal Regulations 21, 1985.
[6] The Council of European Communities, Council Directive, 88/388/EEC, 1988.
[7] G. Gaskell, S. Stares, A. Allansdottir, N. Allum, C. Corchero, C. Fischler, J. Hampel,
J. Jackson, N. Kronberger, N. Mejlgaard, G. Revuelta, C. Schreiner, H. Torgersen,
W. Wagner, Europeans and Biotechnology in 2005: Patterns and Trends, in:
Final report on Eurobarometer 64. 3, 2nd ed., European Commission, 2005.
Fig. 7. Z-Average diameter of the miniemulsion droplets during the time course of
[8] P.V. Iyer, L. Ananthanarayan, Process Biochem. 43 (2008) 1019–1032.
the reaction.
[9] N.N. Gandhi, N.S. Patil, S.B. Sawant, J.B. Joshi, et al., Catal. Rev. 42 (2000)
439–480.
[
[
[
10] K.E. Jaeger, T. Eggert, Curr. Opin. Biotechnol. 13 (2002) 390–397.
11] K.E. Jaeger, M.T. Reetz, Trends Biotechnol. 16 (1998) 396–403.
12] A. Pandey, S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger, V.T. Soccol, Biotechnol.
Appl. Biochem. 2 (1999) 119–131.
of the reaction the size of droplets slightly increased in almost all
cases, except for molar ratio R = 0.4. For R = 0.4 the size of droplets
seems uniform, but for 24 h, probably because the miniemulsion
is stable, which again could contribute to the higher ester yield
observed in this case.
For acid/alcohol molar ratio higher than 2.5 destabilization of
miniemulsion was noticed, resulting in phase separation. This was
particularly perceptible for R = 10, where phase separation was
observed in first 30 min.
[13] C.M.L. Carvalho, M.R. Aieres-Barros, J.M.S. Cabral, Electron. J. Biotechnol. 1
1998) 160–173.
(
[
[
14] M.R. Egmond, C.J. Van Bemmel, Methods Enzymol. 284 (1997) 119–129.
15] P. Fojan, P.H. Jonson, M.T.N. Petersen, S.B. Petersen, Biochimie 82 (2000)
1033–1041.
[16] C. Martinez, P. De Geus, M. Lauwereys, G. Matthyssens, C. Cambillau, Nature
56 (1992) 615–618.
3
[
[
17] K. Dutta, S. Sen, V.D. Veeranki, Process Biochem. 44 (2009) 127–134.
18] T.F. Pio, G.A. Macedo, Adv. Appl. Microbiol. 66 (2009) 77–95.
After 24 h an increase of Z-average diameter was observed for
R = 0.1, 0.2, 0.4 and 1 molar ratio (Fig. 7). This behavior could be
ascribed to the accumulation of hexyl octanoate inside the droplets,
which increase their diameter and stabilize the miniemulsion sys-
tem by its hydrophobicity (Fig. 7).
[19] C.M.L. Carvalho, M.R. Aires-Barros, J.M.S. Cabral, Biotechnol. Bioeng. 66 (1999)
7–34.
1
[
[
20] M.R. Egmond, M.R. De Vlieg, Biochimie 82 (2000) 1015–1021.
21] A.M. Gon c¸ alves, E. Schacht, G. Matthijs, M.R. Aires-Barros, J.M.S. Cabral, Enzyme
Microb. Tech. 24 (1999) 60–66.
[
22] N. Fontes, M.C. Almeida, C. Peres, S. Garcia, J. Grave, M.R. Aires-Barros, C.M.
Soares, J.M.S. Cabral, C.D. Maycock, S. Barreiros, Ind. Eng. Chem. 37 (1998)
3
189–3194.
23] E.P. Melo, M.R. Aires-Barros, J.M.S. Cabral, Appl. Biochem. Biotechnol. 50 (1995)
5–56.
24] M.J. Sebastião, J.M.S. Cabral, M.R. Aires-Barros, Biotechnol. Bioeng. 42 (1993)
326–332.
[
[
[
[
[
[
[
[
4
. Conclusions
4
The present work shows that F. solani pisi cutinase from recom-
25] C.M.L. Carvalho, J.M.S. Cabral, M.R. Aires-Barros, J. Mol. Catal. B Enzyme 5 (1998)
binant S. cerevisiae could be an efficient biocatalyst for the synthesis
of hexyl octanoate in a miniemulsion system. However, the results
obtained indicate that the variation in molar ratio of substrates has
a significant influence on enzyme activity and reaction yield due to
inhibitory effects on cutinase activity.
361–365.
26] V. Papadimitriou, A. Xenakis, C.T. Cazianis, H. Stamatis, M. Egmond, F.N. Kolisis,
Ann. N. Y. Acad. Sci. 799 (1996) 275–280.
27] A.M.C. Pinto-Sousa, J.M.S. Cabral, M.R. Aires-Barros, Biocatalysis 9 (1994)
169–179.
28] P. Cunnah, M.R. Aires-Barros, J.M.S. Cabral, Biocatal. Biotransform. 14 (1996)
Maximum ester yield (86%) for hexyl octanoate was obtained
with alcohol:acid molar ratio R = 1 and enzyme concentration of
125–146.
29] J.A.C. Flipsen, A.C.M. Appel, H.T.W.M. van der Hijden, C.T. Verrips, Enzyme
Microb. Tech. 23 (1998) 274–280.
30] F. Parvaresh, H. Robert, D. Thomas, M.D. Legoy, Biotechnol. Bioeng. 39 (1992)
467–473.
−
1
5
mg ml
Cutinase
2.20 mol min mg ) at R = 0.5, due to the stabilizing effect of
.
activity
achieved
a
maximum
value
−
1
−1
[31] S. Lamare, M.D. Legoy, Biotechnol. Bioeng. 45 (1995) 387–397.
(
[
[
32] S. Lamare, R. Lortie, M.D. Legoy, Biotechnol. Bioeng. 56 (1997) 1–7.
33] G. Sarazin, G. Goethals, J.P. Séguin, M.-D. Legoy, J.N. Barbotin, in: J. Tramper, M.H.
Vermue, H.H. Beeftink, U. von Stockar (Eds.), Usefulness of NMR Methods for
Assaying Cutinase Catalysed Synthesis of Ester in Organic Media. Biocatalysis
in Non-Conventional Media, Elsevier Science Publisher B.V., Amsterdam, 1992,
pp. 23–29.
hexanol on cutinase. This is in agreement with previous results
carried out in reversed micellar systems. A strong inhibition effect
above R = 1 acid:alcohol molar ratio was observed.
A steady state fluorescence study showed changes in cutinase
conformation. By appearance of the red shift during time curse of
the reaction, it is noticeable that denaturation of cutinase depended
of different acid/alcohol molar ratios.
The stability of the miniemulsion was influenced by changes
of the pH and molar ratio. Accumulations of hydrophobic hexyl
octanoate inside the droplets, confirmed by the increase in their
diameter, stabilize the miniemulsion.
[
[
[
[
[
34] G. Sarazin, F. Ergan, J.-P. Séguin, G. Goethals, M.-D. Legoy, J.-N. Barbotin, Biotech-
nol. Bioeng. 51 (1996) 636–644.
35] E.P. Melo, M.G. Ivanova, M.R. Aires-Barros, J.M.S. Cabral, R. Verger, Biochemistry
34 (1995) 1615–1621.
36] E. Rogalska, S. Nury, I. Douchet, R. Verger, Biochem. Soc. Trans. 25 (1997)
161–164.
37] M.L.M. Mannesse, R.C. Cox, B.C. Koops, H.M. Verheij, G.H. Haas, M.R. Egmond,
H.T.W.M. van der Hijden, J. Vlieg, Biochemistry 34 (1995) 6400–6407.
38] C.M.L. Carvalho, J.M.S. Cabral, Biochimie 82 (2000) 1063–1085.
As cutinase deactivation and denaturation in reverse micelles
microemulsion) is a reversible process, the study of the cutinase
reversibility in miniemulsion is a key issue namely when for the
feasibility for industrial application is assessed.
[39] B.K. Paul, S.P. Moulik, Curr. Sci. 80 (2001) 990–1001.
[
40] D.J.C. Constable, C. Jimenez-Gonzalez, R.K. Henderson, Org. Process Res. Dev.
1 (2007) 133–137.
41] R.A. Sheldon, Green Chem. 7 (2005) 267–278.
(
1
[
[42] M.J. Hernáiz, A.R. Alcântara, J.I. García, J.V. Sinisterra, Applied biotransforma-
tions in green solvents, Chem. Eur. J. 16 (2010) 9422–9437.
[
43] K. Nakamura, T. Matsuda, Biocatalysis in water, in: U.M. Lindström (Ed.),
Organic Reactions in Water: Principles, Strategies and Applications, Blackwell
Publishing, Oxford, 2007, pp. 301–349.
Acknowledgements
[
[
44] K. Landfester, Annu. Rev. Mater. Res. 36 (2006) 231–279.
45] S. Målberg, A. Finne-Wistrand, A.-C. Albertsson, Polymer 51 (2010) 5318–5322.
Dragana P.C. Barros acknowledges Funda c¸ ão para a Ciência e
Tecnologia (FCT) for PhD fellowship SFRH/BD/24703/2005.
[46] D. Crespy, K. Landfester, Beilstein J. Org. Chem. 6 (2010) 1132–1148.