Communication
[10] a) P. W. Roome, J. C. Philley, J. A. Peterson, J. Biol. Chem. 1983, 258, 2593–
2598; b) A. Schallmey, G. den Besten, I. G. Teune, R. F. Kembaren, D. B.
Janssen, Appl. Microbiol. Biotechnol. 2011, 89, 1475–1485.
[11] a) Z. Rui, X. Li, X. Zhu, J. Liu, B. Domigan, I. Barr, J. H. Cate, W. Zhang,
Proc. Natl. Acad. Sci. USA 2014, 111, 18237–18242; b) Z. Rui, N. C. Harris,
X. Zhu, W. Huang, W. Zhang, ACS Catal. 2015, 5, 7091–7094.
[12] K. A. Payne, M. D. White, K. Fisher, B. Khara, S. S. Bailey, D. Parker, N. J.
Rattray, D. K. Trivedi, R. Goodacre, R. Beveridge, P. Barran, S. E. Rigby,
N. S. Scrutton, S. Hay, D. Leys, Nature 2015, 522, 497–501.
nology (BMVIT), the Steirische Wirtschaftsförderungsgesell-
schaft (SFG), the Standortagentur Tirol, Austria, the Government
of Lower Austria, and the Technologieagentur der Stadt Wien
(ZIT) through the Austrian FFG-COMET-Funding Program is
gratefully acknowledged. Bernhard Hauer and co-workers (Uni-
versity of Stuttgart, Germany) are acknowledged for providing
the plasmids containing the genes of Fdr/FldA.
[13] a) M. Pollard, F. Beisson, Y. Li, J. B. Ohlrogge, Trends Plant Sci. 2008, 13,
236–246; b) Z. Cong, K. Kawamura, S. Kang, P. Fu, Sci. Rep. 2015, 5, 9580;
c) G. Mingrone, M. Castagneto, Nutr. Rev. 2006, 64, 449–456; d) N. M.
Carballeira, M. Reyes, A. Sostre, H. Huang, M. F. Verhagen, M. W. Adams,
J. Bacteriol. 1997, 179, 2766–2768; e) H. Song, S. Y. Lee, Enzyme Microb.
Technol. 2005, 39, 352–361; f) T. Polen, M. Spelberg, M. Bott, J. Biotechnol.
2013, 167, 75–84.
Keywords: Biocatalysis · Enzyme catalysis · Carboxylic
acids · Decarboxylation · Dienes
[14] S. Picataggio, T. Rohrer, K. Deanda, D. Lanning, R. Reynolds, J. Mielenz,
[1] a) J. Murray, D. King, Nature 2012, 481, 433–435; b) J. C. Philp, R. J. Ritchie,
J. E. Allan, Trends Biotechnol. 2013, 31, 219–222.
L. D. Eirich, Nat. Biotechnol. 1992, 10, 894–898.
[15] a) M. Girhard, S. Schuster, M. Dietrich, P. Durre, V. B. Urlacher, Biochem.
Biophys. Res. Commun. 2007, 362, 114–119; b) I. Matsunaga, A. Ueda,
N. Fujiwara, T. Sumimoto, K. Ichihara, Lipids 1999, 34, 841–846; c) for
identification of hydroxylated side products, P450 peroxygenases P450Cla
(selective for α-hydroxylation) (a) and CYPBSꢀ (α- and/or ꢀ-hydroxylation)
(b) were employed to obtain reference materials; (c) selective hydroxyl-
ation of dioic/ω-alkenoic acids (see compounds 1a–9a and 5b–9b;
[2] a) T. Netscher, Angew. Chem. Int. Ed. 2014, 53, 14313–14315; Angew.
Chem. 2014, 126, 14539–14541; b) U. Biermann, U. Bornscheuer, M. A.
Meier, J. O. Metzger, H. J. Schafer, Angew. Chem. Int. Ed. 2011, 50, 3854–
3871; Angew. Chem. 2011, 123, 3938–3956; c) A. J. J. Straathof, Chem.
Rev. 2014, 114, 1871–1908; d) R. Cernansky, Nature 2015, 519, 379–380.
[3] S. P. Pyl, T. Dijkmans, J. M. Antonykutty, M. F. Reyniers, A. Harlin, K. M.
Van Geem, G. B. Marin, Bioresour. Technol. 2012, 126, 48–55.
10 mM) was performed with H2O2 as the oxidant and products were
[4] a) R. Kourist, Angew. Chem. Int. Ed. 2015, 54, 4156–4158; Angew. Chem.
2015, 127, 4228–4230; b) W. Keim, Angew. Chem. Int. Ed. 2013, 52,
12492–12496; Angew. Chem. 2013, 125, 12722–12726.
[5] Y. Liu, K. E. Kim, M. B. Herbert, A. Fedorov, R. H. Grubbs, B. M. Stoltz, Adv.
Synth. Catal. 2014, 356, 130–136.
[6] C. Bruneau, C. Fischmeister, in: Science of Synthesis: C-1 Building Blocks in
Organic Synthesis (Ed.: P. W. N. M. van Leeuwen), Thieme, Stuttgart, Ger-
many, 2014, vol. 2, p. 349–353.
[7] M. A. Rude, T. S. Baron, S. Brubaker, M. Alibhai, S. B. Del Cardayre, A.
Schirmer, Appl. Environ. Microbiol. 2011, 77, 1718–1727.
identified after derivatization by GC–MS fragmentation pattern analysis
and comparison with literature data (see the Supporting Information).
[16] 3-Hydroxytetradecanedioic acid (7 mg, 11.6 % yield of isolated material)
and 3-hydroxydec-9-enoic acid (8 mg, 20 % yield of isolated material)
were isolated after derivatization to the corresponding esters, as no com-
mercial references were available.
[17] C. M. Jenkins, M. R. Waterman, J. Biol. Chem. 1994, 269, 27401–27408.
[18] F. Hannemann, A. Bichet, K. M. Ewen, R. Bernhardt, Biochim. Biophys. Acta
Gen. Subj. Biochim. Biophys. Acta 2007, 1770, 330–344.
[19] R. Bernhardt, V. B. Urlacher, Appl. Microbiol. Biotechnol. 2014, 98, 6185–
6203.
[20] a) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947–3980;
b) S. Kadkhodayan, E. D. Coulter, D. M. Maryniak, T. A. Bryson, J. H. Daw-
son, J. Biol. Chem. 1995, 270, 28042–28048.
[8] a) J. L. Grant, C. H. Hsieh, T. M. Makris, J. Am. Chem. Soc. 2015, 137, 4940–
4943; b) A. S. Faponle, M. G. Quesne, S. P. de Visser, Chem. Eur. J. 2016,
22, 5478–5483.
[9] a) B. Chen, D.-Y. Lee, M. W. Chang, Metab. Eng. 2015, 31, 53–61; b) J.
Belcher, K. J. McLean, S. Matthews, L. S. Woodward, K. Fisher, S. E. J.
Rigby, D. R. Nelson, D. Potts, M. T. Baynham, D. A. Parker, D. Leys, A. W.
Munro, J. Biol. Chem. 2014, 289, 6535–6550; c) A. Dennig, M. Kuhn, S.
Tassoti, A. Thiessenhusen, S. Gilch, T. Bulter, T. Haas, M. Hall, K. Faber,
Angew. Chem. Int. Ed. 2015, 54, 8819–8822; Angew. Chem. 2015, 127,
8943–8946; d) I. Zachos, S. K. Gassmeyer, D. Bauer, V. Sieber, F. Hollmann,
R. Kourist, Chem. Commun. 2015, 51, 1918–1921; e) Y. Liu, C. Wang, J.
Yan, W. Zhang, W. Guan, X. Lu, S. Li, Biotechnol. Biofuels 2014, 7, 28.
[21] V. Reipa, M. J. Holden, M. P. Mayhew, V. L. Vilker, Biochim. Biophys. Acta
Bioenerg. Biochim. Biophys. Acta 2000, 1459, 1–9.
[22] a) M. Schrewe, M. K. Julsing, B. Bühler, A. Schmid, Chem. Soc. Rev. 2013,
42, 6346–6377; b) M. T. Lundemo, J. M. Woodley, Appl. Microbiol. Biotech-
nol. 2015, 99, 2465–2483.
Received: March 22, 2016
Published Online: June 27, 2016
Eur. J. Org. Chem. 2016, 3473–3477
3477
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim