R. Dele´ens et al. / Tetrahedron Letters 43 (2002) 4963–4968
4967
NMR l 141.27; 48.15; 43.65; 42.11; 25.52; 24.70, qua-
ternary carbon undetected. These data are identical to
those reported in the literature. See: Corey, E. J.;
Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294–
6295.
9
H
H
H
H
H
O
4a
5
H
8a
8
NO2
O2N
OMe
20d
21
1
3
Compound 20a: H NMR l 6.22 (dd, J=5.28, 3.00
Hz, 1H); 6.14 (m, 3J=5.28, 3.75 Hz, 1H); 3.47 (m,
1H); 3.04 (m, 1H); 2.94 (m, 1H); 2.70 (m, 1H); 2.40
(dd,, 2J=8.28, 3J=2.25 Hz, 1H); 2.18 (d, 3J=1.51
Hz, 1H); 1.70–1.13 (m, 5H); 1.12–1.00 (m, 1H); 0.91
Figure 2.
(dd, J=10.92, J=1.11 Hz, 1H). 13C NMR l 140.03;
134.51; 108.33; 55.04; 52.44; 51.61; 47.38; 44.76;
39.13; 37.64; 30.31; 27.45. IR w 2968, 1724, 1528,
1458, 1356, 756. Anal. calcd for C12H15NO2: C, 70.22;
H, 7.37; N. 6.82. Found: C, 69.84; H, 7.28; N. 6.91%.
2
3
recorded as chloroform solutions on Perkin–Elmer
16PC FT-IR spectrometers and are expressed in cm−1.
Representative procedure for the thermal reactions
(E)-1-Nitro-2-phenylthioethylene (2.0 g, 11.0 mmol),
cyclopentadiene (10.0 ml, 7.97 g, 120 mmol), and a
0.1
M solution hydroquinone (1 mL) in tetra-
hydrofuran (1 mL) are placed in a sealed tube and
heated at 110°C for 2 h. The mixture is cooled down
to room temperature and the volatiles are evaporated
under reduced pressure. Chromatography of the
residue and elution with heptane/ethyl acetate (95:5)
leads to the isolation of pure, colorless cycloadduct
12.
Acknowledgements
The ‘Re´gion Haute-Normandie’ is gratefully acknowl-
edged for support of this research through a Ph.D.
grant to R.D., as well as for funds allowing the pur-
chase of the hyperbar reactors.
General procedure for the hyperbar reactions
The requisite nitroalcene (10e or 10f, 0.5 mmol), the
diene (6.0 mmol), and a 0.1 M solution hydroquinone
(0.1 mL) in dichloromethane (1 mL) are placed in a 2
mL high pressure reactor. Compression to the
required pressure and temperatures is achieved for the
time needed (see Tables 1–4). Release of the pressure
and work-up as above afford the desired product.
References
1. (a) Gund, T. M.; Nomura, M.; Scheleyer, P. V. R. J. Org.
Chem. 1974, 39, 2987–2994; (b) Gund, T. M.; Scheleyer, P.
V. R.; Unruh, G. D.; Gleicher, G. J. J. Org. Chem. 1974,
39, 2994–3003; (c) Sasaki, T.; Egushi, S.; Okano, T. J.
Org. Chem. 1984, 49, 444–448; (d) Farooq, O.; Wang, Q.;
Wu, A.; Olah, G. A. J. Org. Chem. 1990, 55, 4282–4283;
(e) Chern, Y. T.; Wang, J. J. Tetrahedron Lett. 1995, 36,
5805–5806.
2. (a) Guy, A.; Doussot, J.; Lemaire, M. Synthesis 1991,
460–462; (b) Zhdankin, V. V.; Krasutsky, A. P.; Kuel, C.
J.; Simonsen, A. J.; Woodward, J. K.; Mismash, B.; Bolz,
J. T. J. Am. Chem. Soc. 1996, 118, 5192–5197.
3. (a) Dumez, E.; Rodriguez, J.; Dulce`re, J.-P. Chem. Com-
mun. 1997, 1831–1832. See also: (b) Durand, A.-C.;
Dumez, E.; Rodriguez, J.; Dulce`re, J. P. Chem. Commun.
1999, 2437–2438.
4. Viehe, H. G.; Ja¨ger, V. Angew. Chem., Int. Ed. Engl. 1969,
8, 273–274.
Analytical data for compounds 12a, 19a, 17b and 20a
1
Compound 12a: H NMR l 7.50–7.40 (m, 2H); 7.38–
3
7.23 (m, 3H); 6.44 (dd, J=5.64, 3.00 Hz, 1H); 6.04
3
3
(dd, J=5.64–2.64 Hz, 1H); 4.87 (t, J=4.76 Hz, 1H);
3
3.77 (t, J=3.00 Hz, 1H); 3.58 (m, 1H); 2.99 (s, 1H);
2
2
2.01 (d, J=9.81 Hz, 1H); 1.77 (d, J=9.81 Hz, 1H).
13C NMR l 139.42; 134.62; 133.58; 131.86; 129.70;
127.98; 91.89; 50.32; 49.33; 48.57; 46.92. IR w 2986,
1548, 1372, 738, 714, 692. Anal. calcd for
C13H13NO2S: C, 63.14; H, 5.30; N, 5.66; S, 12.96.
Found: C, 63.00; H, 5.41; N, 5.92; S, 13.04%.
5. (a) Schmitt, R. J.; Bedford, C. D. Synthesis 1986, 132–133;
(b) Schmitt, R. J.; Bottaro, J. C.; Bedford, C. D.; Ripu-
daman, H. J. Org. Chem. 1987, 52, 2294–2297.
1
Compound 19a: H NMR l 7.46–7.36 (m, 2H); 7.35–
3
7.21 (m, 3H); 4.69 (m, 1H); 3.97 (dd, J=3.39, 3.03
Hz, 1H); 2.97 (m, 1H); 2.42 (d, 2J=4.53 Hz, 1H);
6. (a) Padwa, A.; Fisera, L.; Koehler, K. F.; Rodriguez, A.;
Wong, G. S. K. J. Org. Chem. 1984, 49, 276–281; (b)
Magee, W. L.; Rao, C. B.; Glinka, J.; Hui, H.; Amick, T.
J.; Fiscus, D.; Kakodkar, S.; Nair, M.; Shechter, H. J.
Org. Chem. 1987, 52, 5538–5548; (c) Kraus, G. A.;
Thurston, J.; Thomas, P. J. Tetrahedron Lett. 1988, 29,
1879–1882; (d) Ono, N.; Kamimura, A.; Kaji, A. J. Org.
Chem. 1986, 51, 2139–2142; (e) Ono, N.; Kamimura, A.;
Kaji, A. Tetrahedron Lett. 1986, 27, 1595–1598; (f) Ono,
N.; Kamimura, A.; Kaji, A. J. Org. Chem. 1988, 53,
251–258; (g) Jung, M. E.; Grove, D. D. J. Chem. Soc.,
2
1.99 (d, J=10.53 Hz, 1H); 1.84–1.68 (m, 1H); 1.62–
1.38 (m, 3H); 1.36–1.20 (m, 1H). 13C NMR l 134.39;
131.62; 129.67; 127.79; 94.29; 51.58; 43.90; 43.62;
37.08; 28.47; 22.81. Anal. calcd for C13H15NO2S: C,
62.62; H, 6.06; N, 5.62; S, 12.86. Found: C, 62.38; H,
6.09; N, 5.75; S, 12.92%.
Compound 17b: 1H NMR l 7.01 (d, 3J=7.40 Hz,
1H); 3.49 (m, 1H); 3.15 (m, 1H); 2.00–1.79 (m, 2H);
1.69 (d, 3J=4.89 Hz, 1H); 1.49–1.12 (m, 2H,). 13C