Table 1 Data for NAP ester 1 photolysis release experiments with different QDs and different donors
a
[NAP ester 1] (mM)
[QD] (0.1 mM) lem
Ered
Donor (0.03 M)
Drug release (%)
NAP ester 1 consumed (%)
1
2
3
4
5
6
0.6
0.6
0.6
0.6
0.6
0.6
CdSe/ZnS QD602
CdSe/ZnS QD625
CdSe/ZnS QD602
CdSe/ZnS QD602
CdSe/ZnS QD602
Mn:ZnSe QD585
À1.14
À1.06
À1.14
À1.14
À1.14
À1.16
L-cysteine
L-cysteine
DTT
TEA hydrochloride
EDTA
L-cysteine
53.6
36.0
56.3
12.0
7.9
75.3
38.0
87.4
14.0
11.3
75.0b
64.0b
Light source: UV-cut, l > 400 nm, 62 mW cmÀ2; irradiation time is 15 min.a Reduction potential using ferrocene as internal standard.
b
Irradiation time is 30 min.
The effect of electron donors for this PET-induced photo-
Notes and references
release was also detected by using different donors. As shown
1 N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421,
350–353; S. K. Choi, T. Thomas, M. Li, A. Kotlyar, A. Desai,
in Table 1, several donors, like DL-dithiothreitol (DTT),
triethanolamine (TEA) hydrochloride, and ethylenediamine-
tetraacetic acid (EDTA), were used for comparing with
L-cysteine. In these cases, the efficient release of the anticancer
drug 5-FUA were observed only when DTT and L-cysteine
were used as donors. This can be explained from the electron
donating ability and the molecular structures of the donors. As
known, DTT and L-cysteine were reported as strong reductors
and always used as efficient electron donors. On the other
hand, electron transfer between the donor and acceptor is
ultrafast and plays a role when the distance is short. For DTT
and L-cysteine, the existence of –SH groups make them easy to
adsorb on the surface of QDs to form a supramolecular system
which promotes the process of the PET-induced photolysis
efficiently. In addition, the stronger coordinating ability of
DTT with two –SH groups might determine the higher
efficiency of drug release compared with that of L-cysteine
with only one –SH group. All the results indicate that our
PET-based photo-responsive release could control drug
release by external manipulation of irradiation time,
properties of photosensitizer and donors.
J. James and R. Baker, Chem. Commun., 2010, 46, 2632–2634.
2 M. Noguchi, M. Skwarczynski, H. Prakash, S. Hirota, T. Kimura,
Y. Hayashi and Y. Kiso, Bioorg. Med. Chem., 2008, 16, 5389–5397;
C. P. McCoy, C. Rooney, C. R. Edwards, D. S. Jones and
S. P. Gorman, J. Am. Chem. Soc., 2007, 129, 9572–9573.
3 M. Y. Jiang and D. Dolphin, J. Am. Chem. Soc., 2008, 130, 4236–4237;
S. S. Agasti, A. Chompoosor, C. -C. You, P. Ghosh, C. K. Kim and
V. M. Rotello, J. Am. Chem. Soc., 2009, 131, 5728–5729.
4 M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang,
M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Scheartz,
L. V. Wang and Y. Xia, Nat. Mater., 2009, 8, 935–939; T. Kuo,
V. A. Hovhannisyan, Y. Chao, S. Chao, S. Chiang, S. Lin,
C. Dong and C. Chen, J. Am. Chem. Soc., 2010, 132, 14163–14171.
5 H. J. Schuster, B. Krewer, J. M. von Hof, K. Schmuck,
I. Schuberth, F. Alvesb and L. F. Tietze, Org. Biomol. Chem.,
2010, 8, 1833–1842.
6 R. Orth and S. A. Sieber, J. Org. Chem., 2009, 74, 8476–8479.
7 V. Hagen, S. Frings, J. Bendig, D. Lorenz, B. Wiesner and
U. B. Kaupp, Angew. Chem., Int. Ed., 2002, 41, 3625–3628.
8 J. Lu, E. Choi, F. Tamanoi and J. I. Zink, Small, 2008, 4, 421–426;
Y. Zhu and M. Fujiwara, Angew. Chem., Int. Ed., 2007, 46, 2241–2244.
9 A. Schwarz, S. Stander, M. Berneburg, M. Bohm, D. Kulms,
¨
¨
H. Steeg, K. Grosse-Heitmeyer, J. Krutmann and T. Schwarz, Nat.
Cell Biol., 2002, 4, 26–31.
10 Y. Chen and M. G. Steinmetz, Org. Lett., 2005, 7, 3729–3732;
I. Aujard, C. Benbrahim, M. Gouget, O. Ruel, J.-B. Baudin,
P. Neveu and L. Jullien, Chem.–Eur. J., 2006, 12, 6865–6879.
11 Q. Lin, Q. Huang, C. Li, C. Bao, Z. Liu, F. Li and L. Zhu, J. Am.
Chem. Soc., 2010, 132, 10645–10647.
12 C. Sundararajan and D. E. Falvey, J. Org. Chem., 2004, 69,
5547–5554; J. B. Borak, S. Lpez-Sola and D. E. Falvey, Org. Lett.,
2008, 10, 457–460.
13 C. Sundararajan and D. E. Falvey, Org. Lett., 2005, 7, 2631–2634;
J. B. Borak and D. E. Falvey, J. Org. Chem., 2009, 74, 3894–3899.
14 F. M. Paymo and I. Yildiz, Phys. Chem. Chem. Phys., 2007, 9,
2036–2043.
In conclusion, these experiments demonstrate a successful
controllable anticancer drug release system under the
irradiation of visible light based on photo-induced electron
transfer and utilizing QDs nanoparticles as sensitizers.
To the best of our knowledge, this is the first account of the
application of easily prepared QDs as photosensitizers for
photochemical release strategies. All the control experiments
indicated that this PET-based photo-responsive release
could be controlled by external manipulation including
irradiation time and properties of photosensitizer and donors.
We envision that this novel method has the potential to fulfil
an increasing need for versatile and controllable drug delivery
systems.
15 V. V. Matylisky, L. Dworak, V. V. Breus, T. Bache and
´
J. Wachtveitl, J. Am. Chem. Soc., 2009, 131, 2424–2425;
R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa and Y. Baba,
Nat. Biotechnol., 2004, 22, 1360–1361; J. Liu, C. Bao, X. Zhong,
C. Zhao and L. Zhu, Chem. Commun., 2010, 46, 2971–2973.
16 J. R. Lakowicz, in Principle of Fluorescence Spectroscopy, Springer
Science
pp. 278–285.
& Business Media, LLC, New York, 2006, ch. 8,
We thank the Innovation Program of Shanghai Municipal
Education Commission (092259), NSFC (20903039,
21073062), ‘‘Chen Guang’’ project (09CG25), and Shanghai
Sci. Tech. Comm. (09ZR1408600) for financial support.
17 N. Pradhan, D. Goorskey, J. Thessing and X. Peng, J. Am. Chem.
Soc., 2005, 127, 17586–17587; D. Zhu, X. Jiang, C. Zhao, X. Sun,
J. Zhang and J. Zhu, Chem. Commun., 2010, 46, 5226–5228.
c
1484 Chem. Commun., 2011, 47, 1482–1484
This journal is The Royal Society of Chemistry 2011