Organic Letters
achieved by comparison of the H NMR spectra (Figure 3).
Slight differences in chemical shifts (Δδ) were observed
between hemicalide and model compounds 17c, 17d, and
Letter
1
7
A. L.; Vaishnav, P. Microb. Biotechnol. 2011, 4, 687−699. (c) Kinghorn,
A. D.; Chin, Y.-W.; Swanson, S. M. Curr. Opin. Drug Discovery Dev.
009, 12, 189−196.
2) Carletti, I.; Massiot, G.; Debitus, C. WO2011051380 A1, 2011;
Chem. Abstr. 2011, 154, 513095.
3) (a) Gueritte, F.; Fahy, J. The Vinca alkaloids. In Anticancer Agents
from Natural Products; Cragg, G. M., Kingston, D. G. I., Newmann, D.
J., Eds.; CRC Press: Boca Raton, FL, 2005; pp 123−135. (b) Kingston,
D. G. I. Taxol and its analogs. In Anticancer Agents from Natural
Products; Cragg, G. M., Kingston, D. G. I., Newmann, D. J., Eds.; CRC
Press: Boca Raton, FL, 2005; pp 89−122.
4) (a) Fleury, E.; Lannou, M.-I.; Bistri, O.; Sautel, F.; Massiot, G.;
Pancrazi, A.; Ardisson, J. J. Org. Chem. 2009, 74, 7034−7045.
b) Fleury, E.; Lannou, M.-I.; Bistri, O.; Sautel, F.; Massiot, G.;
Pancrazi, A.; Ardisson, J. Eur. J. Org. Chem. 2009, 4992−5001.
5) Fleury, E.; Sorin, G.; Prost, E.; Pancrazi, A.; Sautel, F.; Massiot,
G.; Lannou, M.-I.; Ardisson, J. J. Org. Chem. 2013, 78, 855−864.
6) Sorin, G.; Fleury, E.; Tran, C.; Prost, E.; Molinier, N.; Sautel, F.;
2
(
17e. The best agreement was again observed for model
compound 17c, whereas the epimer at C36 17e led to a
difference of 0.12 ppm for H37. Additionally, inspection of the
signal corresponding to H37 was particularly meaningful. The
splitting pattern observed in hemicalide (ddd, J = 11.0, 7.7, 3.5
Hz) is almost identical with that in 17c (ddd, J = 11.0, 7.5, 3.9
Hz), is comparable to that in 17d (ddd, J = 10.0, 7.5, 4.4 Hz),
but is significantly different in the case of 17e (dt, J = 11.1, 4.3
Hz), as a consequence of the conformational change induced
by inversion of C36 in the latter compound. Thus, the relative
configuration of the C36−C42 subunit of hemicalide appears to
be the same as that in model compound 17c.
(
́
(
(
(
(
Massiot, G.; Specklin, S.; Meyer, C.; Cossy, J.; Lannou, M.-I.; Ardisson,
J. Org. Lett. 2013, 15, 4734−4737.
(
(
7) Details are provided in the Supporting Information.
8) Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.;
Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461−
464.
9) Salit, A.-F.; Meyer, C.; Cossy, J.; Delouvrie,
Tetrahedron 2008, 64, 6684−6697.
10) (a) Hafner, A.; Duthaler, R. O.; Mari, R.; Rihs, J.; Rothe-Streit,
P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321−2336.
b) Cossy, J.; BouzBouz, S.; Pradaux, F.; Willis, C.; Bellosta, V. Synlett
002, 1595−1606.
11) (a) Ghosh, A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998,
9, 4651−4654. (b) Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron Lett.
1999, 40, 4187−4188.
12) A substrate-controlled allylation (AllylSnCl ) was used in this
5
(
́
B.; Hennequin, L.
(
(
2
(
3
Figure 3. Δδ (ppm) between diastereomeric model compounds 17c,
1
1
7d, 17e and hemicalide in H NMR (CD OD).
3
(
3
case; see: White, J. D.; Hong, J.; Robarge, L. A. J. Org. Chem. 1999, 64,
206−6216.
13) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron Lett. 2004,
5, 7733−7736.
14) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997,
In summary, comparison of the NMR data of five
6
(
4
(
diastereomeric model compounds for the C32−C46 segment
of hemicalide has allowed the assignment of the relative
configuration of the C36−C42 δ-lactone subunit. These
synthetic efforts also indicated the possibility to construct the
C34−C35 olefin by a Julia−Kocienski olefination which will be
exploited in our ongoing convergent total synthesis of this
antitumor marine natural product and analogues thereof.
1
6, 4229−4231. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T.
Tetrahedron Lett. 1998, 39, 8479−8482. (c) Edwards, H. J.;
Hargrave, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010,
39, 2093−2105.
(
15) The diastereoselectivity was improved (11/11′ = 91:9) when
ASSOCIATED CONTENT
Supporting Information
the 1,4-addition was achieved under double stereodifferentiating
conditions with (R)-BINAP as a chiral ligand (matched manifold) at
the expense of a lower yield (51%).
■
*
S
Experimental procedures and spectral data for all new
(16) Davis, F. A.; Haque, M. S.; Ulatowski, T. G.; Towson, J. C. J.
Org. Chem. 1986, 51, 2402−2404.
(17) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655−
2
661.
AUTHOR INFORMATION
(18) De Gussem, E.; Herrebout, W.; Specklin, S.; Meyer, C.; Cossy,
■
*
*
J.; Bultinck, P. Chem.Eur. J. 2014, 20, 17385−17394.
(
19) (a) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A.
́
Synlett 1998, 26−28. (b) Aïssa, C. Eur. J. Org. Chem. 2009, 1831−
1844.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
S.S. and G.S. thank the CNRS for a postdoctoral fellowship.
Financial support from the ANR is gratefully acknowledged
■
(AMICAL project, ANR-BLAN-2013).
REFERENCES
■
(
1) (a) Basmadjian, C.; Zhao, Q.; Benthouhami, E.; Djehal, A.;
Nebigil, C. G.; Johnson, R. A.; Serova, M.; de Gramont, A.; Faivre, S.;
́
Raymond, E.; Desaubry, L. G. Front. Chem. 2014, 2, 20. (b) Demain,
D
Org. Lett. XXXX, XXX, XXX−XXX