RSC Advances
Paper
solvents such as a,a,a-trifluorotoluene,20 known also to be very
toxic towards aquatic organisms; (ii) high mole percentages of
TEMPO, typically21 in excess of 10 mole%; or (iii) the need for
various organometallic complexes, e.g. Fe(III) or oxamide Cu(II)
co-catalysts,19,22 in the presence of ionic liquids such as
[bmim]PF6. As a consequence, assessment of the ‘‘green-ness’’
of a particular chemical reaction should take into account
considerations that extend beyond just the atom efficiency of
the reactants themselves, but also incorporate the ‘‘whole-of-
reaction’’ attributes of the various other chemicals and
materials that are employed as part of the synthetic protocol.
As such, oxidative reactions carried out with these new
multiply-displayed TEMPO solid state heterogeneous catalysts
provide a useful addition to the green chemical panel of
catalysts. Moreover, these alternative conditions do not
capture the advantages of densely immobilised TEMPO
polymers as solid state catalysts with very high radical
concentrations for the rapid high yield oxidation of alcohols
as described in this investigation. This study thus documents
useful routes to the preparation and application of a new class
of solid phase oxidation catalysts for use in synthetic reactions
based on more benign and green chemical procedures.
and J. K. Kochi, Metal-Catalyzed Oxidations of Organic
Compounds, Academic Press: New York, 1981.
5 (a) W. A. Walters, The Chemistry of Free Radicals, Oxford,
London, 1948; (b) E. G. Rozantsev and V. D. Sholle,
Synthesis, 1971, 190, 212–217.
6 (a) R. A. Sheldon and I. W. C. E. Arends, Adv. Synth. Catal.,
2004, 346, 1051–1071; (b) R. A. Sheldon and Isabel W. C.
E. Arends, J. Mol. Catal. A: Chem., 2006, 251, 200–214; (c)
R. Ciriminna and M. Pagliaro, Org. Process Res. Dev., 2010,
14, 245–251; (d) P. L. Bragd, H. van Bekkum and A.
C. Besemer, Top. Catal., 2004, 27, 49–66.
7 (a) D. Brunel, F. Fajula, J. B. Nagy, B. Deroide, M. J. Verhoef,
L. Veum, J. A. Peters and H. van Bekkumd, Appl. Catal., A,
2001, 213, 73–82; (b) C. Tanyeli and A. Gu¨mu¨s, Tetrahedron
Lett., 2003, 44, 1639–1642; (c) J. C. Hodges, L.
S. Harikrishnan and S. Ault-Justus, J. Comb. Chem., 2000,
2, 80–88; (d) M. Gilhespy, M. Lok and X. Baucherel, Catal.
Today, 2006, 117, 114–119.
8 (a) H. Nishide and K. Oyaizu, Science, 2008, 319, 737; (b)
K. Oyaizu and H. Nishide, Adv. Mater., 2009, 21, 2339–2344.
9 H. Nishide, S. Iwasa, Y. Pu, T. Suga, K. Nakahara and
M. Satoh, Electrochim. Acta, 2004, 50, 827–831.
10 Y. Zhao and S. Perrier, Macromolecules, 2007, 40,
9116–9124.
´
11 A. Michaud, G. Gingras, M. Morin, F. Beland, R. Ciriminna,
D. Avnir and M. Pagliaro, Org. Process Res. Dev., 2007, 11,
766–768.
12 V. Lima, X. Jiang, J. Brokken-zjjp, P. J. Schoenmakers,
B. Klumperman and R. van der Linde, J. Polym. Sci., Part A:
Polym. Chem., 2005, 43, 959–997.
13 M. A. M. Oliveira, C. Boyer, M. Nele, J. C. Pinto, P.
B. Zetterlund and T. P. Davis, Macromolecules, 2011, 44,
7167–7175.
Acknowledgements
This work was partially supported by the Global COE program
‘‘Practical Chemical Wisdom’’ at Waseda University from
MEXT, Japan and the Australian Research Council.
14 (a) B. Belleau and G. Malek, J. Am. Chem. Soc., 1968, 90,
1651–1652; (b) P. Maingault, C. Hoinard, G. Crouzat-Reynes
and D. Guilloteau, J. Chromatogr., A, 1984, 314, 445–449.
15 T. Fey, H. Fischer, S. Bachmann, K. Albert and C. Bolm, J.
Org. Chem., 2001, 66, 8154–8159.
16 L. Di and Z. Hua, Adv. Synth. Catal., 2011, 353, 1253–1259.
17 A. C. Herath and J. Y. Becker, Electrochim. Acta, 2008, 53,
4324–4330.
18 C. Zhu, A. Yoshimura, Y. Wei, V. N. Nemykin and V.
V. Zhdankin, Tetrahedron Lett., 2012, 53, 1438–1444.
19 I. W. E. Arends and R. A. Sheldon, in Modern Oxidation
Methods, ed. J. E. Baeckvall, (2nd Edition) Wiley-VCH
Verlag GmbH & Co. KgaA, Weisbaden, 2010, pp. 147–185.
20 S. Wertz and A. Studer Helv, Helv. Chim. Acta, 2012, 95,
1758–1772.
Notes and references
1 (a) P. T. Anastas and J. C. Warner, Green Chemistry: Theory
and Practice, Oxford University Press, London, 1998; (b) P.
T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35,
686–694.
2 (a) J. H. Clark, Acc. Chem. Res., 2002, 35, 791–797; (b) J.
M. Thomas, J. C. Hernandez-Garrido and R. G. Bell, Top.
Catal., 2009, 52, 1630–1639.
¨
3 (a) J. Backvall Ed., Modern Oxidation Methods, 2nd ed.,
Wiley-VCH, 2010; (b) T. Matsumoto, M. Ueno, N. Wang and
S. Kobayashi, Chem.–Asian J., 2008, 3, 196–214; (c) R.
A. Sheldon and I. W. C. E. Arends, Adv. Synth. Catal., 2004,
346, 1051–1071; (d) C.-X. Miao, J.-Q. Wang, B. Yu, W.
G. Cheng, J. Sun, S. Chanfreau, L.-N. He and S.-J. Zhang,
Chem. Commun., 2011, 47, 2697–2699.
21 B. Zhang, Y. Cui and N. Jiao, Chem. Commun., 2012, 48,
4498–4500.
4 (a) G. Cainelli and G. Cardillo, Chromium Oxidation in
Organic Chemistry, Springer, Berlin, 1984; (b) R. A. Sheldon
22 L. Liu, D. Liu, Z. Xia, J. Gao, T. Zhang, J. Ma, D. Zhang and
Z. Tong, Monatsh. Chem., 2013, 144, 251–254.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv.