17 D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem., Int. Ed., 2005, 44,
7852–7872.
18 J. Durand, E. Teuma and M. Gómez, Eur. J. Inorg. Chem., 2008, 2008,
3577–3586.
immediately analyzing them by GC-MS on a Supelco SP-2330
capillary column.
4.8.4. Recycling experiments. A quinoline hydrogenation
run was performed as described in Section 4.8.1, using 1 mL of
quinoline and 30 cm3 hexane as the solvent. At the end of the
reaction, the reactor was cooled to room temperature and the
catalyst was allowed to settle down; the supernatant liquid was
carefully withdrawn as much as possible and 1 mL of fresh
quinoline and 30 cm3 of solvent were added. A second hydro-
genation run was then started following the same procedure;
further recycling steps were carried out by repeating the same
procedure.
When using cyclohexene as the substrate, 10 mL of neat
cyclohexene was used in the first run and the experiments were
carried out at room temperature. After 3 h of reaction, another
10 mL of fresh cyclohexene was added and a second run was
started. The hydrogenation was carried out for three runs in total.
19 I. Favier, D. Madec, E. Teuma and M. Gomez, Curr. Org. Chem., 2011,
15, 3127–3174.
20 J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and
G. Zhao, Angew. Chem., Int. Ed., 2004, 43, 1397–1399.
21 H.-P. Kormann, G. Schmid, K. Pelzer, K. Philippot and B. Chaudret,
Z. Anorg. Allg. Chem., 2004, 630, 1913–1918.
22 L. M. Bronstein, D. M. Chernyshov, I. O. Volkov, M. G. Ezernitskaya,
P. M. Valetsky, V. G. Matveeva and E. M. Sulman, J. Catal., 2000, 196,
302–314.
23 J.-P. Tessonnier, L. Pesant, G. Ehret, M. J. Ledoux and C. Pham-Huu,
Appl. Catal., A, 2005, 288, 203–210.
24 C. Evangelisti, N. Panziera, A. D’Alessio, L. Bertinetti, M. Botavina and
G. Vitulli, J. Catal., 2010, 272, 246–252.
25 J.-L. Pellegatta, C. Blandy, R. Choukroun, C. Lorber, B. Chaudret,
P. Lecante and E. Snoeck, New J. Chem., 2003, 27, 1528–1532.
26 A. Drelinkiewicza, A. Waksmundzka, W. Makowski, J. W. Sobczak,
A. Król and A. Zieba, Catal. Lett., 2004, 94, 143–156.
27 M. Gruber, S. Chouzier, K. Koehler and L. Djakovitch, Appl. Catal., A,
2004, 265, 161–169.
28 M. J. Climent, A. Corma, S. Iborra and M. Mifsud, Adv. Synth. Catal.,
2007, 349, 1949–1954.
29 S. Jansat, J. Durand, I. Favier, F. Malbosc, C. Pradel, E. Teuma and
M. Gómez, ChemCatChem, 2009, 1, 244–246.
Acknowledgements
30 L. Rodríguez-Pérez, C. Pradel, P. Serp, M. Gómez and E. Teuma, Chem-
CatChem, 2011, 3, 749–754.
31 D. Tabuani, O. Monticelli, A. Chincarini, C. Bianchini, F. Vizza,
S. Moneti and S. Russo, Macromolecules, 2003, 36, 4294–4301.
32 Z. Guo, H. Feng, H.-c. Ma, Q.-X. Kang and Z.-W. Yang, Polym. Adv.
Technol., 2004, 15, 100–104.
33 C. Bianchini, V. Dal Santo, A. Meli, S. Moneti, R. Psaro, L. Sordelli and
F. Vizza, Inorg. Chim. Acta, 2008, 361, 3677–3680.
34 P. Claus, H. Berndt, C. Mohr, J. Radnik, E.-J. Shin and M. A. Keane,
J. Catal., 2000, 192, 88–97.
We thank Dr Zhongqi Cheng and the Environmental Sciences
Analytical Center (ESAC) of Brooklyn College for use of the
X-ray powder diffractometer. We also thank Dr Alan Lyons of
the Chemistry Department of the College of Staten Island for
access to the XPS spectrometer. Financial support from the
Donors of the American Chemical Society Petroleum Research
Fund (Grant # 47472-AC3) and the US Department of Energy
(Grant # DEEE0003129) is gratefully acknowledged.
35 N. Mahata, K. V. Raghavan, V. Vishwanathan, C. Park and M. A. Keane,
Phys. Chem. Chem. Phys., 2001, 3, 2712–2719.
36 M. Fang, N. Machalaba and R. A. Sánchez-Delgado, Dalton Trans.,
2011, 10621–10632.
37 C. A. Sandoval, T. Ohkuma, K. Muniz and R. Noyori, J. Am. Chem.
Soc., 2003, 125, 13490–13503.
38 Powder Diffraction File, Card # 46-1043, PDF-2/Release 2004; Inter-
national Center for Diffraction Data, Newton Square, PA, USA.
39 Powder Diffraction File, Card # 65-0476, PDF-2/Release 2004; Inter-
national Center for Diffraction Data, Newton Square, PA, USA.
40 A. V. Biradar, A. A. Biradar and T. Asefa, Langmuir, 2011, 27, 14408–
14418.
Notes and references
1 H. Topsøe, B. S. Clausen and F. E. Massoth, Hydrotreating Catalysis
Science and Technology, Springer-Verlag, New York, 1996.
2 The Desulfurization of Heavy Oils and Residua, ed. J. G. Speight, Marcel
Dekker, New York, 2000.
3 R. A. Sánchez-Delgado, Organometallic Modeling of the Hydrodesulfuri-
zation and Hydrodenitrogenation Reactions, Kluwer Academic Publish-
ers, Dordrecht, 2002.
41 O. Domínguez-Quintero, S. Martínez, Y. Henríquez, L. D’Ornelas,
H. Krentzien and J. Osuna, J. Mol. Catal. A: Chem., 2003, 197,
185–191.
42 A. Bouriazos, K. Mouratidis, N. Psaroudakis and G. Papadogianakis,
Catal. Lett., 2008, 121, 158–164.
4 K. Toshiaki, I. Atsushi and Q. Weihua, Hydrodesulfurization and Hydro-
denitrogenation: Chemistry and Engineering, Wiley-VCH, Tokyo, 1999.
5 R. H. Crabtree, Energy Environ. Sci., 2008, 1, 134–138.
6 S.-I. Murahashi, Y. Imada and Y. Hirai, Bull. Chem. Soc. Jpn., 1989, 62,
2968–2976.
43 A. Bouriazos, S. Sotiriou, C. Vangelis and G. Papadogianakis, J. Organo-
met. Chem., 2010, 695, 327–337.
7 S. Brunet, D. Mey, G. Pérot, C. Bouchy and F. Diehl, Appl. Catal., A,
2005, 278, 143–172.
44 B. R. Moser, M. J. Haas, J. K. Winkler, M. A. Jackson, S. Z. Erhan and
G. R. List, Eur. J. Lipid Sci. Technol., 2007, 109, 17–24.
45 N. Ravasio, F. Zaccheria, M. Gargano, S. Recchia, A. Fusi, N. Poli and
R. Psaro, Appl. Catal., A, 2002, 233, 1–6.
46 F. Zaccheria, R. Psaro and N. Ravasio, Green Chem., 2009, 11, 462–465.
47 B. Nohair, C. Especel, G. Lafaye, P. Marécot, L. C. Hoang and J. Barbier,
J. Mol. Catal. A: Chem., 2005, 229, 117–126.
8 P. J. Baricelli, E. Lujano, M. Modroño, A. C. Marrero, Y. M. García,
A. Fuentes and R. A. Sánchez-Delgado, J. Organomet. Chem., 2004,
689, 3782–3792.
9 M. Di Serio, M. Cozzolino, M. Giordano, R. Tesser, P. Patrono and
E. Santacesaria, Ind. Eng. Chem. Res., 2007, 46, 6379–6384.
10 M. Di Serio, R. Tesser, L. Pengmei and E. Santacesaria, Energy Fuels,
2007, 22, 207–217.
11 O. Falk and R. Meyer-Pittroff, Eur. J. Lipid Sci. Technol., 2004, 106,
837–843.
12 E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and
J. G. Goodwin, Ind. Eng. Chem. Res., 2005, 44, 5353–5363.
13 J. A. Melero, J. Iglesias and G. Morales, Green Chem., 2009, 1285–
1308.
14 S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. Luque de Castro,
G. Dorado and M. P. Dorado, Energy Fuels, 2009, 23, 2325–2341.
15 Y. C. Sharma, B. Singh and J. Korstad, Fuel, 2011, 90, 1309–1324.
16 R. Yang, M. Su, M. Li, J. Zhang, X. Hao and H. Zhang, Bioresour.
Technol., 2010, 101, 5903–5909.
48 M. S. Carvalho, R. A. Lacerda, J. P. B. Leao, J. D. Scholten,
B. A. D. Neto and P. A. Z. Suarez, Catal. Sci. Technol., 2011, 1, 480–
488.
49 B. S. Souza, D. M. M. Pinho, E. C. Leopoldino, P. A. Z. Suarez and
F. Nome, Appl. Catal. A., 2012, 433–434, 109–114.
50 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in Handbook
of X-ray Photoelectron Spectroscopy: A Reference Book of Standard
Spectra for Identification and Interpretation of XPS Data, ed. J. Chastain,
Perkin-Elmer, Eden Prairie, MN, 1992.
51 C. Amorim and M. A. Keane, J. Colloid Interface Sci., 2008, 322,
196–208.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 14490–14497 | 14497