Please do not adjust margins
Green Chemistry
Page 4 of 6
DOI: 10.1039/C8GC00299A
COMMUNICATION
Journal Name
Figure 1 Progress of iron-catalyzed [2 + 2] cycloaddition of 1a with 2a under
controlled conditions
The authors thank financial supports from the National Natural
Science Foundation of China (21602067). The authors are also
grateful to the Analytical and Testing Centre of HUST,
Analytical and Testing Centre of School of Chemistry and
Chemical Engineering (HUST) as well as 100 Talents Program of
the Hubei Provincial Government. Prof. Yuefa Gong and
Dengfu Lu (HUST) are acknowledged for helping with cyclic
voltammetry studies.
Additional experiments were conducted by introducing
1,10-phenanthroline as a ligand (10 mol%) to the [2 + 2]
reaction mixture (t = 1 h, ca. 45% conversion). 1H NMR studies
showed that the cyclobutanation was still progressing to reach
full conversion but at a slightly dropped rate as compared to
standard conditions (Figure 1). In sharp contrast, pre-formed
iron complex of this ligand completely interrupted the
formation of 3a. The results suggest that chain propagation is
likely involved in this radical cation [2 + 2] reactions.18 On the
other hand, although a beneficial influence of oxygen was
observed, performing the cycloaddition in degassed
acetonitrile under argon also led to full translation of 1a at a
slightly dropped rate. We thus conclude a possible role of
aerobic atmosphere to turn over the iron(II) to iron(III), which
accordingly contributes to the overall efficiency of the
reaction. Taken together, a plausible mechanism is proposed
(Scheme 3, shown in [2 + 2] dimerization). Anethole 1a is
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) T. V. Hansen and Y. Stenstrøm, Naturally Occurring
Cyclobutanes, in Organic Synthesis: Theory and Applications,
ed. T. Hudlicky, Elsevier, Oxford, UK, 2001, vol. 5, pp. 1–38;
(b) E. Lee-Ruff and G. Mladenova, Chem. Rev, 2003, 103
,
1449; (c) V. M. Dembitsky , J. Nat. Med., 2008, 62, 1; (d) M.
A. Beniddir, L. Evanno, D. Joseph, A. Skiredj, E. Poupon, Nat.
Prod. Rep., 2016, 33, 820.
initially oxidized by iron(III) to radical cation species
coupled with styrene 2a to generate radical cation
intermediate regains an electron dominantly from the neutral
substrate 1a and concurrently releases product 3a
consequently affording a new radical cation to continue the
A
, which is
B
. This
2
3
For leading reviews, see: (a) M. T. Crimmins, Chem. Rev.,
1988, 88, 1453; (b) D. I. Schuster, G. Lem and N. A.
Kaprinidis, Chem. Rev., 1993, 93, 3; (c) S. Poplata, A. Tröster,
Y.-Q. Zou and T. Bach, Chem. Rev., 2016, 116, 9748.
,
A
chain. The turnover of iron(III) is crucial to trigger the oxidation
(a) H.-C. Xu and K. D. Moeller, J. Am. Chem. Soc., 2008, 130
,
of 1a once the chain termination occurs.
13542; (b) Y. Okada, R. Akaba and K. Chiba, Org. Lett., 2009,
11, 1033; (c) Y. Okada, A. Nishimoto, R. Akaba and K.Chiba, J.
Org. Chem., 2011, 76, 3470; (d) R. Feng, J. A. Smith and K. D.
Moeller, Acc. Chem. Res., 2017, 50, 2346.
4
5
E. J. Horn, B. R. Rosen and P. S. Baran, ACS Cent. Sci., 2016, 2,
302.
(a) R. A. Caldwell, K. Mizuno, P. E. Hansen, L. P. Vo, M.
Frentrup and C. D. Ho, J. Am. Chem. Soc., 1981, 103, 7263;
(b) H. Ohara, T. Itoh, M. Nakamura and E. Nakamura, Chem.
Lett., 2001, 7, 624; (c) J. Du and T. P. Yoon, J. Am. Chem. Soc.,
2009, 131, 14604; (d) M. A. Ischay, Z. Lu and T. P. Yoon, J.
Am. Chem. Soc., 2010, 132, 8572; (e) M. A. Ischay, M. S.
Ament and T. P. Yoon, Chem. Sci., 2012,
Riener and D. A. Nicewicz, Chem. Sci., 2013,
3, 2807; (f) M.
, 2625.
4
6
7
8
(a) M. Schmittel and A. Burghart, Angew. Chem., Int. Ed.,
1997, 36, 2550; (b) M. A. Ischay and T. P. Yoon, Eur. J. Org.
Chem., 2012, 2012, 3359; (c) S. A. Morris, J. Wang and N.
Zheng, Acc. Chem. Res., 2016, 49, 1957; (d) J.-R. Chen, X.-Q.
Hu, L.-Q. Lu and W.-J. Xiao, Chem. Soc. Rev., 2016, 45, 2044.
(a) N. J. Saettel, J. Oxgaard and O. Wiest, Eur. J. Org. Chem.,
2001, 1429; (b) J. D. Parrish, M. A. Ischay, Z. Lu, S. Guo, N. R.
Peters and T. P. Yoon, Org. Lett., 2012, 14, 1640; (c) B. Yang
and Z. Lu, J. Org. Chem., 2016, 81, 7288; (d) K. A. Margrey
and K. A. Nicewicz, Acc. Chem. Res., 2016, 49, 1997.
(a) N. L. Bauld, Tetrahedron, 1989, 45, 5307; (b) D. W.
Reynolds, B. Harirchian, H.-S. Chiou, B. K. Marsh, N. L. Bauld
and J. Phys, Org. Chem., 1989, 2, 57; (c) N. P. Schepp and L. J.
Johnston, J. Am. Chem. Soc., 1994, 116, 6895; (d) M. Mella,
M. Freccero, E. Fasani and A. Albini, Chem. Soc. Rev., 1998,
27, 81; (e) Y. Hu, E. J. Meuillet, L. Qiao, M. M. Berggren, G.
Scheme 3 A plausible reaction mechanism
In summary, we have developed the first intermolecular
radical cation cycloadditions of styrenes using catalytic amount
of ferric salts. The method reported represents a novel,
efficient and green approach to selectively assemble various
functionalized cyclobutanes and cyclohexenes under very mild
reaction conditions. Given both synthetic and biological values
of these classes of skeletons, as well advantages of iron
catalysis in many aspects, we believe our methodology
disclosed herein will find widespread applications in synthetic
chemistry. Further investigations to apply radical cation
intermediates in other organic reactions are underway.
Powis and A. P. Kozikowski, Tetrahedron Lett., 2000, 41
7415.
,
9
(a) D. J. Bellville, D. D. Wirth and N. L. Bauld, J. Am. Chem.
Soc., 1981, 103, 720; (b) S. F. Nelsen, Acc. Chem. Res., 1987,
20, 269; (c) M. Schmittel and A. Burghart, Angew. Chem.,
Int. Ed., 1997, 36, 2550.
Acknowledgements
10 (a) P. Gassman, D. A. Singleton, J. Am. Chem. Soc., 1984, 106
7993; (b) D. W. Reynolds, K. T. Lorenz, H.-S. Chiou, D. J.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins