Communication
NJC
comparison to aliphatic alcohols is anticipated to arise due to
stabilization via Cu–p interactions.
4 G. W. Parshall and S. D. Ittel, Homogeneous Catalysis: The
Application of Catalysis by Soluble Transition Metal Complexes,
Wiley, New York, 2nd edn, 1992, p. 360.
5
6
T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037–3058.
G.-J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science,
Conclusions
2000, 287, 1636.
In conclusion, we report here a new and relatively inexpensive
7
8
(a) D. Wang, A. B. Weinstein, P. B. White and S. S. Stahl,
Chem. Rev., 2018, 118, 2636–2679; (b) D. S. Mannel,
S. S. Stahl and T. W. Root, Org. Process Res. Dev., 2014, 18,
oxygen-bridged bimetallic CuSeO
3
ꢀ2H
2
O catalyst with [Cu–O–
Se]-type bonds for the first time for the oxidation of aryl methanols
to carbonyl compounds. The catalyst is able to oxidize a diverse
array of primary, secondary, aromatic, and hetero-aromatic aryl
methanols to the corresponding carbonyl compounds without
over-oxidation to the corresponding acids. The reaction does not
need any additives. It is anticipated that the oxygen-bridged
1
503–1508; (c) T. Suzuki, Chem. Rev., 2011, 111, 1825–1845.
(a) T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev.,
005, 105, 2329–2364; (b) L. Rout and T. Punniyamurthy,
2
Adv. Synth. Catal., 2007, 349, 846; (c) S. Velusamy and
T. Punniyamurthy, Org. Lett., 2004, 2, 217–219;
25
bimetallic catalyst [Cu–O–Se] has inherent properties that are
responsible for making the reaction successful in comparison to
the monometallic Se(IV) and Cu(II) salts. The concept is further
supported by computational DFT studies.
(d) S. Velusamy, M. Ahamed and T. Punniyamurthy, Org.
Lett., 2004, 4, 4821–4824; (e) S. Velusamy, A. Srinivasan and
T. Punniyamurthy, Tetrahedron Lett., 2006, 47, 923–926.
D. Wang, A. B. Weinstein, P. B. White and S. S. Stahl, Chem.
Rev., 2018, 118, 2636–2679.
9
1
0 (a) M. S. Ahmed, D. S. Mannel, T. W. Root and S. S. Stahl,
Org. Prog. Res. Dev., 2017, 21, 1388–1393; (b) D. S. Mannel,
M. S. Ahmed, T. W. Root and S. S. Stahl, J. Am. Chem. Soc.,
Conflicts of interest
There are no conflicts to declare.
2
017, 139, 1690–1698.
1 (a) B. A. Steinhoff, S. R. Fix and S. S. Stahl, J. Am. Chem. Soc.,
002, 124, 766–767; (b) B. A. Steinhoff and S. S. Stahl, Org.
1
2
Acknowledgements
Lett., 2002, 4, 4179–4181.
1
2 (a) J. E. Steves and S. S. Stahl, Copper-Catalyzed Aerobic
Alcohol Oxidation. Liquid Phase Aerobic Oxidation Catalysis:
Industrial Applications and Academic Perspectives, 2016, ch. 6,
vol. 85–96, pp. 85–96; (b) S. E. Allen, R. R. Walvoord,
R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013,
Dr Rout thanks Prof. K. V. R. Chary, Director, IISER Berhampur
Odisha for research facilities. Dr Rout thanks P. Behera for
recording NMR spectra. SERB/EMR/2016/006898, DST, India;
S & T Department Govt. of Odisha/27562800512107/20/1919;
Planning and Convergence Department, Govt. of Odisha (no.
L.N./716/P/2016); and University Grants Commission (UGC)
start-up grant [F-4-5(58)/2014 (BSR/FRP)] are acknowledged
for financial support. Dr Scanlon thanks the Oyster Scholar
Fund for financial support and MU3C and NSF CHE-1039925
for computing resources.
1
13, 6234–6458; (c) S. D. McCann, J.-P. Lumb, B. A. Arndtsen
and S. S. Stahl, ACS Cent. Sci., 2017, 3, 314–321;
d) J. E. Nutting, M. Rafiee and S. S. Stahl, Chem. Rev.,
018, 118, 4834–4885.
(
2
1
1
3 (a) I. E. Mark o´ , P. R. Giles, M. Tsukazaki, S. M. Brown and
C. J. Urch, Science, 1996, 274, 2044–2046; (b) I. E. Mark o´ ,
et al., Adv. Inorg. Chem., 2004, 56, 211–240.
Notes and references
4 (a) S. D. McCann and S. S. Stahl, J. Am. Chem. Soc., 2016,
138, 199–206; (b) J. M. Hoover and S. S. Stahl, J. Am. Chem.
Soc., 2011, 133, 16901–16910; (c) B. L. Ryland and S. S. Stahl,
Angew. Chem., Int. Ed., 2014, 53, 8824–8838; (d) X. Xie and
S. S. Stahl, J. Am. Chem. Soc., 2015, 137, 3767–3770;
(e) J. M. Hoover, B. L. Ryland and S. S. Stahl, J. Am. Chem. Soc.,
2013, 135, 2357–2367; ( f ) M. S. Sigman and D. R. Jensen, Acc.
Chem. Res., 2006, 39, 221–229; (g) B. A. Steinhoff, A. E. King and
S. S. Stahl, J. Org. Chem., 2006, 71, 1861–1868.
1
(a) Comprehensive Organic Synthesis, ed. B. M. Trost and
I. A. Fleming, Pergamon Press, Oxford, 1991, vol. 7;
(b) Organic Synthesis by Oxidation with Metal Compounds,
ed. W. J. Mijs and C. R. H. I. de Jonge, Plenum Press, New
York, 1986; (c) G. Tojo and M. Fernandez, Basic Reactions in
Organic Synthesis: Oxidation of Alcohols to Aldehydes and
Ketones, Springer, New York, 2010.
2
3
(a) M. Nakanishia and C. Bolm, Adv. Synth. Catal., 2007, 349,
8
61–864; (b) Iron-Catalyzed Oxidation Reactions, Iron Catalysis 15 T. Punniyamurthy and L. Rout, Coord. Chem. Rev., 2008,
in Organic Chemistry, ed. A. C. Mayer, C. Bolm and B. Plietker,
252, 134–154.
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, 16 (a) N. Rabjohn, Org. React., 2011, 261–416; (b) G. R. Waitkins and
pp. 73–123, ISBN: 978-3-527-31927-5.
(a) R. A. Sheldon and J. K. Kochi, Metal-catalyzed Oxidations
of Organic Compounds, Academic Press, New York, 1981;
C. W. Clark, Chem. Rev., 1945, 36, 35–289; (c) B. Hamigeran,
B. M. Trost, C. Pissot-Soldermann, I. Chen and G. M. Schroeder,
J. Am. Chem. Soc., 2004, 126, 4480; (d) H. Rappoport and
U. T. Bhaleroa, J. Am. Chem. Soc., 1971, 93, 4835.
(b) H. Mimoun, in Comprehensive Coordination Chemistry,
ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Perga- 17 (a) J. M. Coxon, E. Dansted and M. P. Hartshorn, Org. Synth.,
mon Press, New York, 1987, p. 371.
1988, 6, 946; 1977, 56, 25; (b) H. L. Riley, J. F. Morley and
5778
|
New J. Chem., 2021, 45, 5775–5779
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021