Advanced Synthesis & Catalysis
10.1002/adsc.201901115
smoothly via this straightforward route because these
transformations are difficult in conventional
technologies. Moreover, this environment-friendly
strategy is applicable to preparing a wide array of Se-
containing phthalides. Some notable features of this
electrochemical method are broad substrate scope,
convenient operation, inexpensive electrolyte
requirement, high conversion efficiency, and
practicality.
Rowand, S. D. Levine, M. P. Wachter, R. E. Adams,
D. W. Hahn, J. Med. Chem. 1985, 28, 796–803.
[3] M. I. Alam, T. S. Khan, M. A. Haider, ACS
Sustainable Chem. & Eng. 2019, 7, 2894-2898.
4] D. J. Menger, J. J. A. Vanloon, W. Takken, Med. Vet.
Entomol. 2014, 28, 407–413.
5] The forty-ninth meeting of the Joint FAO/WHO
Expert Committee on Food Additives; WHO food
additive series 40; WHO: Geneva, 1998.
6] F. Mehl, I. Bombarda, N. Vanthuyne, R. Faure, E. M.
Gaydou, Food Chem. 2010, 121, 98–104.
7] a) J. S. Clark, Chem. Commun., 2006, 3571–3581; b)
J. Skardon-Duncan, M. Sparenberg, A. Bayle, S.
Alexander, J. S. Clark, Org. Lett. 2018, 20, 2782–
[
[
[
[
Experimental Section
Pent-4-en-1-ol 1a or pent-4-enoic acid 4c (0.5 mmol, 1.0
equiv), diphenyl diselenide (0.25 mmol, 0.5 equiv), and
NH I (0.1 mmol, 5 mol%) were placed in a 10 mL three-
4
necked round-bottomed flask. The flask was equipped with
a condenser, RVC (100 PPI, 1 cm × 1 cm × 1.2 cm)
cathode, and a platinum plate (1 cm × 1 cm) anode.
2
786; c) A.-L. Lee, S. J. Malcolmson, A. Puglisi, R. R.
Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2006,
28, 5153–5157; d) A. E. Sutton, B. A. Seigal, D. F.
Finnegan, M. L. Snapper, J. Am. Chem. Soc. 2002,
24, 13390–13391.
8] a) S. Sathyamoorthi, J. D. Bois, Org. Lett. 2016, 18,
308–6311; b) T. Dohi, N. Takenaga, A. Goto, A.
1
1
[
3
CH CN (6 mL) was added. Electrolysis was performed at
6
room temperature using a constant current of 10 mA until
complete consumption of the substrate (monitored by TLC,
approximately 6 h). Water (30 mL) and ethyl acetate (30
ml) were added. The phases were separated, and the
aqueous phase was extracted with ethyl acetate (2 × 30
mL). The combined organic solution was dried over
Maruyama, Y. Kita, Org. Lett. 2007, 16, 3129–3132;
c) G. Pandey, S. Pal, R. Laha, Angew. Chem. Int. Ed.
2013, 52, 5146–5149; d) H. Nakatsuji, Y. Sawamura,
A. Sakakura, K. Ishihara, Angew. Chem. Int. Ed. 2014,
53, 6974–6977.
4
anhydrous MgSO , filtered, and concentrated under
[
[
9] T. Teduka, H. Togo, Synlett, 2005, 6, 923–926.
10] a) S. T. Manjare, Y. Kim, D. G. Churchill, Acc. Chem.
Res. 2014, 47, 2985–2998; b) G. Mugesh,W.-W. du
Mont, H. Sies, Chem. Rev. 2001, 101, 2125–2179; c)
C. W. Nogueira, G. Zeni, J. B. T. Rocha, Chem. Rev.
reduced pressure. The residue was subjected to
chromatography via silica gel elution with ethyl
acetate/petroleum ether to yield product 2-((phenylselanyl)
-
-
methyl)tetrahydrofuran 3a or 5-((phenylselanyl)methyl)di
hydrofuran-2(3H)-one 5c.
2
004, 104, 6255–6285.
[
[
11] F. Cui, J. Chen, Z. Mo, S. Su, Y. Chen, X. Ma, H.
Tang, H. Wang, Y. Pan, Y. Xu, Org. Lett. 2018, 20,
925–929.
Acknowledgements
12] a) R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev.
2
011, 111, 2981–3019; b) R. Giri, S. KC, J. Org.
We thank the National Natural Science Foundation of China
Chem. 2018, 83, 3013–3022.
(
21861006), Ministry of Education of China (IRT_16R15),
Guangxi Natural Science Foundation of China
2016GXNSFEA380001, 2016GXNSFGA380005,
018GXNSFBA281151), Guangxi Key R&D Program (No.
[
[
13] Z. Liu, H.-Q. Ni, T. Zeng, K. M. Engle, J. Am. Chem.
Soc. 2018, 140, 3223–3227.
14] a) B. Shrestha, P. Basnet, R. K. Dhungana, S. KC, S.
Thapa, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2017,
(
2
AB18221005), Science and Technology Major Project of Guangxi
AA17204058-21), Guangxi science and technology base and
1
39, 10653–10656; b) J.-W. Gu, Q.-Q. Min, L.-C. Yu,
X. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12270–
2274.
(
special talents (guike AD19110027), Guangxi Funds for
Distinguished Experts and State Key Laboratory for Chemistry
and Molecular Engineering of Medicinal Resources
1
[
[
15] a) F. Wang, D. Wang, X. Mu, P. Chen, G. Liu, J. Am.
Chem. Soc. 2014, 136, 10202–10205; b) Y.-T. He, L.-
H. Li, Y.-F. Yang, Z.-Z. Zhou, H.-L. Hua, X.-Y. Liu,
Y.-M. Liang, Org. Lett. 2014, 16, 270–273.
(CMEMR2019-A03) for financial support.
16] a) W. Kong, N. Fuentes, A. García-Domínguez, E.
References
Merino, C. Nevado, Angew. Chem. Int. Ed. 2015, 54,
2
487–2491; b) A. K. Singh, R. Chawla, L. D. S.
[
[
1] a) P. A. Clarke, S. Santos, Eur. J. Org. Chem. 2006,
Yadav, Tetrahedron Lett. 2014, 55, 4742–4746.
17] Y. Wang, L. Zhang, Y. Yang, P. Zhang, Z. Du, C.
Wang, J. Am. Chem. Soc. 2013, 135, 18048–18051.
18] M. J. Harper, E. J. Emmett, J. F. Bower, C. A. Russell,
J. Am. Chem. Soc. 2017, 139, 12386–12389.
19] a) D.-F. Lu, C.-L. Zhu, Z.-X. Jia, H. Xu, J. Am.
Chem. Soc. 2014, 136, 13186-13189; b) P. Wu, K. Wu,
L. Wang, Z. Yu, Org. Lett. 2017, 19, 5450–5453.
2
1
045–2053; b) T. Nakata, Chem. Soc. Rev., 2010, 39,
955–1972; c) Z. Zhang, N. A. Butt, W. Zhang,
[
[
[
Chem. Rev. 2016, 116, 14769–14827; d) K. J. R.
Murauski, A. A. Jaworski, K. A. Scheidt, Chem. Soc.
Rev. 2018, 47, 1773–1782; e) S. Pal, V. Chatare, M.
Pal, Curr. Org. Chem. 2011, 15, 782–800.
2] R. M. Kanojia, E. Chin, C. Smith, R. Chen, D.
5
This article is protected by copyright. All rights reserved.