I. Erden et al. / Tetrahedron 64 (2008) 5497–5501
5501
Takabe, K. Tetrahedron Lett. 2008, 49, 548; (c) Scafato, P.; Larocca, A.; Rosini, C.
Tetrahedron: Asymmetry 2006, 17, 2511.
4. (a) Erden, I.; Sorensen, E. M. Tetrahedron Lett. 1983, 23, 2731; (b) Erden, A. I.; de
Meijere, A. Tetrahedron Lett. 1983, 24, 3811; (c) Erden, I. Tetrahedron Lett. 1984,
25, 1535; (d) Erden, I. Tetrahedron Lett. 1985, 26, 5635.
chromatography on silica gel, eluting with 15% EtOAc/pet. ether to
give 1.1 g of d,l-muscone (85%), identical in all respects to an au-
thentic sample.
5. A three-carbon ring expansion methodology via cyclopentenone annulation to
cyclododeacanone has been applied to muscone synthesis: Tsuji, J.; Yamada, T.;
Shimizu, I. J. Org. Chem. 1980, 45, 5209.
4.8. Reaction of 12 with NaOMe
6. See: The Merck Index, 13th Edition; for a review, see: Ohloff, G. Fortschr. Chem.
Forsch. 1969, 12, 185.
(E)-11,11-Dichlorobicyclo[7.2.0]undec-8-en-10-one (1 g, 4.3 mmol)
was dissolved in 20 mL of MeOH. This solution was added dropwise
to a NaOMe solution (preformed from 0.2 g, 8.3 mmol of Na and
20 mL of MeOH) at 0 ꢀC. Upon addition, the color of solution
immediately turned red. The mixture was stirred at 0 ꢀC for
30 min, then heated to 50 ꢀC for 1 h. It was poured onto 100 mL
of ice-water, acidified with 10% HCl, extracted with 3ꢂ50 mL of
ether. The combined ether extracts were dried over MgSO4, the
solvent rotaevaporated, and the yellowish waxy material was
purified by column chromatography on silica gel (15% EtOAc/
pet. ether) to give two products.
7. Other ring expansion methodology based on dichloroketene cycloadditions
have been reported: (a) one-carbon ring expansion: Greene, A. G.; Depres, J.-P.
J. Am. Chem. Soc. 1979, 101, 4003; Greene, A. E.; Luche, M.-J.; Serra, A. A. J. Org.
Chem. 1985, 50, 3957; (b) two-carbon expansion: Depres, J.-P.; Navarro, B.;
Greene, A. E. Tetrahedron 1989, 45, 2989; (c) free-radical five- and six-carbon
ring expansions: Zhang, W.; Collins, M. R.; Mahmood, K.; Dowd, P. Tetrahedron
Lett. 1995, 36, 2729 and references cited therein.
8. (a) von Doering, W. E.; La Flamme, P. M. Tetrahedron 1958, 2, 75; (b) Moore,
W. R.; Ward, H. R. J. Org. Chem. 1962, 27, 4179; (c) Skattebol, L. Acta Chem. Scand.
1963, 17, 1683; (d) Gutsche, C. D.; Redmore, D. Carbocyclic Ring Expansion
Reactions; Academic: New York, NY, 1968; Krow, G. R. Tetrahedron 1987, 43, 3
and references cited therein.
9. (a) Tidwell, T. T. Ketenes; Wiley-Interscience: New York, NY, 1995; (b) Lee-Ruff,
E. Advances in Strain in Organic Chemistry; Halton, B., Ed.; JAI: London, 1991;
Vol. I, pp 167–213; (c) Namylso, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103,
1485; (d) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563.
10. Bak, D. A.; Brady, W. T. J. Org. Chem. 1979, 44, 107.
11. Krepski, L. R.; Hassner, A. J. Org. Chem. 1978, 43, 2879.
4.8.1. (E)-11,11-Dimethoxybicyclo[7.2.0]undec-8-en-10-one (16)
Yield 13%; 1H NMR (300 MHz, CDCl3)
d
6.6 (ddd, J¼2.9, 7.4,
9.6 Hz, 1H), 3.5 (s, 3H), 3.3 (s, 3H), 3.0 (m, 1H), 2.35 (m, 2H), 2.0 (m,
2H), 1.4–1.7 (m, 8H); 13C NMR (75 MHz, CDCl3)
194.0, 147.8, 138.3,
d
12. Mehta, G.; Rao, H. S. P. Synth. Commun. 1985, 15, 991.
13. A 2:1 mixture of two epimers, as indicated by the characteristic doublets of
121.9, 52.9, 51.6, 51.2, 30.4, 29.6, 26.7, 26.5, 26.4, 22.5 ppm. Anal.
Calcd for C14H22O2: C, 75.63; H, 9.97. Found: C, 75.60; H, 9.95.
doublets at
d 4.95 and 5.00 ppm for the respective CHCl hydrogens.
14. Pinder, A. R. Synthesis 1980, 425 and references cited therein.
15. (a) Jeffs, P. W.; Molina, G.; Cass, M. W.; Cortese, N. A. J. Org. Chem. 1982, 47, 3871;
(b) Rosini, G.; Ballini, R. Tetrahedron 1983, 39, 1085.
16. Braillon, B.; Salaun, J.; Gore, J.; Conia, J. M. Bull. Soc. Chim. Fr. 1964, 1981.
17. (a) Bertrand, M.; Gras, J.-L.; Gore, J. Tetrahedron Lett. 1972, 1189; (b) Bertrand,
M.; Maurin, R.; Gras, J.-L.; Gil, G. Tetrahedron 1975, 31, 849; (c) Bertrand, M.;
Gras, J.-L.; Gore, J. Tetrahedron 1975, 31, 857.
4.8.2. (Z)-11,11-Dimethoxybicyclo[7.2.0]undec-7-en-10-one (15)
Yield 65%; 1H NMR (300 MHz, CDCl3)
d
5.73 (dd, J¼6.8, 10.5 Hz,
1H), 5.56 (ddt, J¼1.7, 6.2, 10.5 Hz, 1H), 3.85 (dd, J¼6.8, 10.8 Hz, 1H),
3.4 (s, 3H), 3.3 (s, 3H), 2.2 (m, 2H), 2.1 (m, 2H), 1.85 (5, 1H), 1.2–1.7
(m, 6H); 13C NMR (75 MHz, CDCl3)
d 204.7, 133.1, 125.3, 58.5, 53.5,
18. Marko, I.; Ronsmans, B.; Hesbain-Frisque, A.-M.; Dumas, S.; Ghosez, L. J. Am.
Chem. Soc. 1985, 107, 2192.
50.4, 46.7, 27.5, 27.1, 26.6, 26.0, 21.8 ppm; FTIR (film): 3012, 2931,
2861, 2834, 1785, 1445, 1256, 1210, 1125, 1078, 1044, 997, 909, 797,
727 cmꢁ1. Anal. Calcd for C14H22O2: C, 75.63; H, 9.97. Found: C,
75.65; H, 9.96.
19. Miller, R. D.; McKean, D. R. Tetrahedron Lett. 1980, 2639.
20. 1H NMR (CCl4, 60 MHz):
20H).
d 4.5 (m, 1H), 3.05 (m, 2H), 2.0–2.8 (m, 4H), 1.4 (m,
21. Mookherjee, B. D.; Patel, R. R.; Ledig, W. O. J. Org. Chem. 1971, 36, 4124.
22. Compound 12 has previously been prepared by Brady et al. by dichloroketene
addition, generated from dichloroacetyl chloride with triethylamine, to 1,2-
cyclononadiene: Brady, W. T.; Stockton, J. D.; Patel, A. D. J. Org. Chem. 1974,
39, 236.
23. Conia, J. M.; Robson, M. J. Angew. Chem., Int. Ed. Engl. 1975, 14, 473 and refer-
ences cited therein.
24. Harding, K. E.; Trotter, J. W.; May, L. M. J. Org. Chem. 1977, 42, 2715.
25. Cagnon, J. R.; Marchand-Brynaert, J.; Ghosez, L. J. Braz. Chem. Soc. 1996, 7, 371.
26. (a) Paryzek, Z.; Blaszczyk. Liebigs Ann. 1993, 615; (b) Paryzek, Z.; Blaszczyk.
Liebigs Ann. 1995, 341.
Acknowledgements
This work was supported by funds from the National Science
Foundation (CHE-9729001), the National Institutes of Health,
MBRS-SCORE Program-NIGMS (Grant No. GM52588), and in part
from a grant (P20 MD) from the Research Infrastructure in Minority
Institutions Program, NCMHD, NIH.
27. Hassner, A.; Naidorf-Meir, S.; Frimer, A. A. J. Org. Chem. 1996, 61, 4051.
28. Chun, K. H.; Yoon, T.; Shin, Y. E. N.; Jo, C.; Jo, Y.-J.; Yun, H.; Oh, J. Bull. Korean
Chem. Soc. 2005, 26, 1104.
29. Donskaya, N. A.; Bessmertnykh, A. G.; Drobysh, V. A.; Shabarov, Y. S. Zh. Org.
Khim. 1987, 23, 751.
References and notes
30. (a) Brown, J.; Pawar, D. M.; Noe, E. A. J. Org. Chem. 2003, 68, 3420; (b) Nozaki,
H.; Aratani, T.; Toraya, T.; Noyori, R. Tetrahedron 1971, 27, 905; (c) Shea, K.; Kim,
J.-S. J. Am. Chem. Soc. 1992, 114, 3044.
31. Makosza, M. Pure Appl. Chem. 1975, 43, 439.
32. Abad, A.; Agullo, C.; Arno, M.; Seoane, E. Tetrahedron 1986, 42, 2429.
33. Friedrich, E.; Lutz, W. Chem. Ber. 1980, 113, 1245.
34. (a) Ruedi, G.; Hansen, H.-J. Helv. Chim. Acta 2004, 87, 1628; (b) Ruedi, G.; Oberli,
M. A.; Nagel, M.; Hansen, H.-J. Org. Lett. 2004, 6, 3179.
35. Tsuji, J.; Yamada, T.; Shimizu, I. J. Org. Chem. 1980, 45, 5211.
1. (a) Weinheimer, A. J.; Chang, C. W. J.; Matson, J. A. Fortschr. Chem. Org. Naturst.
1979, 36, 285; (b) Hanson, J. R. Nat. Prod. Rep. 1984, 1, 171; (c) Macrolide Anti-
biotics; Omura, S., Ed.; Academic: New York, NY, 1984; (d) Sorm, F. Fortschr.
Chem. Org. Naturst. 1961, 19, 1.
2. Mookherjee, B. D.; Wilson, R. A. Fragrance Chemistry; Theimer, E. T., Ed.; Aca-
demic: New York, NY, 1982; p 433.
3. For recent syntheses, see: (a) Ruedi, G.; Hansen, H.-J. Tetrahedron Lett. 2004, 45,
5143; (b) Hisanaga, Y.; Asumi, Y.; Takahashi, M.; Shimizu, Y.; Mase, N.; Yoda, H.;