LETTER
Synthesis of Urea Derivatives
1279
In summary, we developed a simple process for the syn-
(5) Selected examples using PEG as media for chemical
reactions and phase-transfer catalyst, see: (a) Totten, G. E.;
Clinton, N. A.; Matlock, P. L. J. Macromol. Sci. Rev.
Macromol. Chem. Phys. 1998, C38, 77. (b) Naik, S. D.;
Doraiswamy, L. K. AIChE J. 1998, 44, 612. (c) Guo, Z.; Li,
M.; Willauer, H. D.; Huddleston, J. G.; April, G. C.; Rogers,
R. D. Ind. Eng. Chem. Res. 2002, 41, 253. (d) Ottani, S.;
Vitalini, D.; Comelli, F.; Castellari, C. J. Chem. Eng. Data
2002, 47, 1197. (e) Cortright, R. D.; Sanchez-Castillo, M.;
Dumesic, J. A. Appl. Catal., B 2002, 39, 353. (f) Chen, J.;
Spear, S. K.; Huddleston, J. G.; Holbrey, J. H.; Swatloski,
R. P.; Rogers, R. D. Ind. Eng. Chem. Res. 2004, 43, 5358.
thesis of symmetrical ureas from amines and CO without
2
using any dehydrating agents. Notably inorganic base/
PEG1000 proved to be an efficient and recyclable cata-
lyst, and PEG1000 as a support could enhance the reac-
tion. The catalyst could also be recovered after a simple
separation procedure, and reused over 5 times with reten-
tion of high activity. This process presented here could
show much potential application in industry due to its
simplicity and ease of catalyst recycling.
(g) Chen, J.; Spear, S. K.; Huddleston, J. G.; Holbrey, J. H.;
Rogers, R. D. J. Chromatogr., B: Anal. Technol. Biomed.
Life Sci. 2004, 807, 145. (h) Chen, J.; Spear, S. K.;
Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64.
6) Aresta, M.; Quaranta, E. Tetrahedron 1992, 48, 1515.
7) Cortright, R. D.; Sanchez-Castillo, M.; Dumesic, J. A. Appl.
Catal., B 2002, 39, 353.
Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
(
(
Acknowledgment
We are grateful to the National Natural Science Foundation of Chi-
na (Grant Nos. 20672054, 20872073) and the 111 project (B06005),
and the Committee of Science and Technology of Tianjin for finan-
cial support.
(8) (a) Wang, J.-Q.; He, L.-N. New J. Chem. 2009, 33, 1637.
(b) Wang, J.-Q.; He, L.-N.; Miao, C.-X.; Gao, J.
ChemSusChem 2009, 2, 755. (c) Wang, J.-Q.; He, L.-N.;
Miao, C.-X. Green Chem. 2009, 11, 1013. (d) Wang, J.-L.;
He, L.-N.; Dou, X.-Y.; Wu, F. Aust. J. Chem. 2009, 62, 917.
(
e) Du, Y.; Wu, Y.; Liu, A.-H.; He, L.-N. J. Org. Chem.
References and Notes
2008, 73, 4709. (f) Wang, J.-Q.; Cai, F.; Wang, E.; He, L.-N.
Green. Chem. 2007, 9, 882. (g) Tian, J.-S.; Maio, C.-X.;
Wang, J.-Q.; Cai, F.; Du, Y.; Zhao, Y.; He, L.-N. Green
Chem. 2007, 9, 566. (h) Dou, X.-Y.; Wang, J.-Q.; Wang, E.;
He, L.-N. Synlett 2007, 3058. (i) Du, Y.; Wang, J.-Q.; Chen,
J.-Y.; Cai, F.; Tian, J.-S.; Kong, D.-L.; He, L.-N.
Tetrahedron Lett. 2006, 47, 1271.
(
1) Selected examples utilizing ureas in the synthesis of
pharmaceuticals, agricultural chemicals, dye chemistry,
see: (a) Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V.
Russ. Chem. Rev. (Engl. Transl.) 1985, 54, 249.
(
b) Getman, D. P.; DeCrescenzo, G. A.; Heintz, R. M.; Reed,
K. L.; Talley, J. J.; Bryant, M. L.; Clare, M.; Houseman, K.
A.; Marr, J. J.; Mueller, R. A.; Vazquez, M. L.; Shieh, H. S.;
Stallings, W. C.; Stegeman, R. A. J. Med. Chem. 1993, 36,
(
9) Totten, G. E.; Clinton, N. A. J. Macromol. Sci. Rev.
Macromol. Chem. Phys. 1988, C28, 293.
10) Typical Procedure for the Preparation of KOH/
(
(
2
(
1
88. (c) Matsuda, K. Med. Res. Rev. 1994, 14, 271.
d) Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2,
40. (e) Bartolo, G.; Salerno, G.; Mancuso, R.; Costa, M.
PEG1000
PEG1000 (4.0 g), KOH (0.224 g, 4 mmol) and water (20
mL) were mixed and stirred for 2–3 h. Water was then
vaporized under reduced pressure. Finally, the residue was
dried under vacuum to give the supported catalyst. See:
Alvaro, M.; Baleizao, C.; Carbonell, E.; Ghoul, E. M.;
Garcia, H.; Gigante, B. Tetrahedron 2005, 61, 12131.
J. Org. Chem. 2004, 69, 4741. (f) Estevez-Souza, A.;
Pissinate, K.; Nascimento, M. G.; Grynberg, N. F.;
Echevaria, A. Bioorg. Med. Chem. 2006, 14, 492.
(
(
2) (a) Shriner, R. L.; Horne, W. H.; Cox, R. F. B. Org. Synth.
1
943, 2, 453. (b) Nowick, J. S.; Powell, N. A.; Nguyen,
1
11) In the H NMR spectra, the chemical shift for NH peak of
T. M.; Noronha, G. J. Org. Chem. 1992, 57, 7364.
Et NH/CDCl /CO was shifted to upfield from d = 5.947 to
5
charts were provided on pS15 in the Supplementary
Information.
2
3
2
3) For examples of the reaction of amines with CO to afford
1
2
.194 ppm after adding PEG to the solution. The H NMR
ureas by using dehydrating agents, see: (a) Yamazaki, N.;
Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191.
(b) Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T.
(
(
12) Abribat, B.; Bigot, Y. L.; Gaset, A. Synth. Commun. 1994,
Synthesis 1978, 394. (c) Nomura, R.; Yamamoto, M.;
Matsuda, H. Ind. Eng. Chem. Res. 1987, 26, 1056.
2
4, 2091.
13) General Procedure for the Synthesis of Urea from
Amines and CO2
(d) Fournier, J.; Bruneau, C.; Dixneuf, P. H.; Lgcolier, S.
J. Org. Chem. 1991, 56, 4456. (e) Nomura, R.; Hasegawa,
Y.; Ishimoto, M.; Toyosaki, T.; Matsuda, H. J. Org. Chem.
A 50 mL autoclave reactor was charged with amine (4
mmol), KOH/PEG1000 (0.4 mmol). CO was introduced
into the autoclave, and then the mixture was stirred at desired
temperature for 15 min to allow equilibration. Finally, the
pressure was adjusted to the reaction pressure (e.g., 8 MPa),
and the mixture was stirred continuously. When the reaction
finished, the reactor was cooled in ice-water and CO was
ejected slowly. An aliquot of sample was taken from the
resultant mixture for GC analysis. The catalyst (KOH/
PEG1000) was separated by adding Et O and cooling and
recovered by a simple filtration. The products were further
2
1
992, 57, 7339. (f) Tai, C.-C.; Huck, M. J.; McKoon, E. P.;
Woo, T.; Jessop, P. G. J. Org. Chem. 2002, 67, 9070.
g) Porwanski, S.; Menuel, S.; Marsura, X.; Marsura, A.
(
Tetrahedron Lett. 2004, 45, 5027.
4) For examples of the reaction of amines with CO to afford
(
2
2
ureas without dehydrating agents, see: (a) Shi, F.; Deng, Y.;
SiMa, T.; Peng, J.; Gu, Y.; Qiao, B. Angew. Chem. Int. Ed.
2
003, 42, 3257. (b) Munshi, P.; Heldebrant, D. J.; McKoon,
2
E. P.; Kelly, P. A.; Tai, C.-C.; Jessop, P. G. Tetrahedron
Lett. 2003, 44, 2725. (c) Shi, F.; Zhang, Q.; Ma, Y.; He, Y.;
Deng, Y. J. Am. Chem. Soc. 2005, 127, 4182. (d) Ion, A.;
Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9,
1
13
identified by H NMR and C NMR spectroscopy, which
are consistent with those reported in the literature and in
good agreement with the assigned structures (see electronic
Supplementary Information).
14
158. (e) Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.; Zhang, J.;
Han, B. Green Chem. 2008, 10, 465.
Synlett 2010, No. 8, 1276–1280 © Thieme Stuttgart · New York