11318
J. Am. Chem. Soc. 2001, 123, 11318-11319
mational effects15 inherent within a particular system can override
electronic factors. When the latter operate, the selectivity of the
rhodium carbenoid intermediate is less predictable.
A Stable Dirhodium Tetracarboxylate Carbenoid:
Crystal Structure, Bonding Analysis, and Catalysis
James P. Snyder,* Albert Padwa, and Thomas Stengel
Department of Chemistry, Emory UniVersity
Atlanta, Georgia 30322
Anthony J. Arduengo, III,* Alexander Jockisch, and
Hyo-Joong Kim
Department of Chemistry, The UniVersity of Alabama
Tuscaloosa, Alabama 34587-0336
While resonance forms representing metal-stabilized carboca-
tions and metal carbenes in the classical σ/π framework have
been invoked to explain Rh-carbenoid chemistry,11 the more recent
formulation of a double “half-bond” model12,16 appears to better
describe the Rh-C linkage. To substantiate the independent
existence of rhodium carbenoids and to more fully characterize
the Rh-Rh-C bonding, we report a combined X-ray crystal-
lographic and quantum chemical evaluation of the first stable
rhodium carbenoid intermediate.
Since the observation of an imidazol-2-ylidene by the Arduengo
group in 1991,17 a number of stable crystalline carbenes have
been described.18 We reasoned that combination of a derivative
of the latter and a dirhodium(II) tetracarboxylate catalyst would
deliver the desired metal complex. Accordingly, admixture of
carbene 419 (R5 ) Me) and the Rh(II) pivaloate 5 delivered
compound 6 as wine-red crystals suitable for X-ray structure
determination.
ReceiVed August 23, 2001
ReVised Manuscript ReceiVed September 20, 2001
Transition metal catalyzed reactions of R-diazo ketones (1) are
a powerful means to synthesize complex polycyclic organic
frameworks.1 In particular, dirhodium(II) carboxylate and car-
boxamide catalysts mediate a wide range of synthetic transforma-
tions such as cyclopropanation,2 C-H and X-H insertion,3,4
aromatic substitution,5 and ylide formation.6 Enantioselective
transformations promoted by chiral Rh(II) complexes allow
construction of both carbocyclic and heterocyclic systems in
optically active form,7-10 and much effort has been directed
toward understanding the factors that control both regio- and
enantioselectivities.7,11,12
The critical intermediate presumed to unify this body of
chemistry is an electrophilic rhodium carbenoid in which a metal-
axial carbene adopts a linear Rh-Rh-C arrangement (3, R2 )
COR4). A growing number of examples demonstrate that the
reactivity of rhodium carbenoids is greatly affected by the
electronic nature of the bridging ligand attached to the metal.1
Accordingly, the reactivity-determining Rh-C interaction is
regarded as highly polarizable,7,13 although steric14 and confor-
(1) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; John Wiley and Sons: New York,
1998.
The molecular geometry is depicted in Figure 1 with selected
variables given in Table 1. The overall structure of the dirhodium
cage is faithful to that determined by X-ray crystallography for a
series of Rh2-tetracarboxylates.20 One noteworthy difference is
an expanded Rh-Rh distance of 0.05 Å in 6 by comparison with
the average for 2, R ) H and C3H7 (2.424 vs 2.37 Å, respectively).
A similar elongation upon formation of rhodium carbenoids has
been predicted and rationalized by DFT calculations.12,16
To gain insight into the nature of the metal-carbon bonding
in 6, we have performed additional DFT calculations on alkyl-
truncated variations of the structure (i.e. tetraformate or tetraac-
etate) with two different basis sets (Table 1). All geometry
optimizations predict the overall structure and the bisection of
the carboxylate bridges by the imidazoyl ring (N-C-Rh-O‡ )
ca. 0°, Table 1). The latter feature is clearly steric in origin as
indicated by the alternative energy minimum DFT conformers
of the bis-N-demethyl analogue (6, N-R, R ) H) and the parent
carbenoid (3, R1 ) R2 ) H), both of which orient the carbene
moiety in a plane common to two of the bridging carboxylates.
(2) Burke, S. D.; Grieco, P. A. Org. React. (N.Y.) 1979, 26, 361.
(3) Taber, D. F. ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 3, p 1045.
(4) Buck, R. T.; Doyle, M. P.; Drysdale, M. J.; Ferris, L.; Forbes, D. C.;
Haigh, D.; Moody, C. J.; Pearson, N. D.; Zhou, Q. L. Tetrahedron Lett. 1996,
37, 7631.
(5) Ye, T.; McKervey, A. Chem. ReV. 1994, 94, 1091.
(6) Padwa, A.; Hornbuckle, S. F. Chem. ReV. 1991, 91, 263. Padwa, A.;
Weingarten, M. D. Chem. ReV. 1996, 96, 223.
(7) Doyle, M. P. Aldrichim. Acta 1996, 29, 3. Doyle, M. P.; McKervey,
M. A. J. Chem. Soc., Chem. Commun. 1997, 983. Doyle, M. P.; Forbes, D.
C. Chem. ReV. 1998, 98, 911-935.
(8) Davies, H. M. L.; Ahmed, G.; Calvo, R. L.; Churchill, M. R.; Churchill,
D. G. J. Org. Chem. 1998, 63, 2641. Davies, H. M. L.; Huby, N. J. S.; Cantrell,
W. R., Jr.; Olive, J. L. J. Am. Chem. Soc. 1993, 115, 9468.
(9) McCarthy, N.; McKervey, M. A.; Ye, T.; McCann, M.; Murphy, E.;
Doyle, M. P. Tetrahedron Lett. 1992, 33, 5983. Pierson, N.; Fernandez-Garcia,
C.; McKervey, M. A. Tetrahedron Lett. 1997, 38, 4705.
(10) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Chem. Commun. 1999,
2185. Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetrahedron Lett. 1997,
38, 6471. Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.;
Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417. Kitagaki,
S.; Yasugahira, M.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron
Lett. 2000, 41, 5931.
(11) Doyle, M. P. Acc. Chem. Res. 1986, 19, 348. Doyle, M. P. Chem.
ReV. 1986, 86, 919.
(15) Doyle, M. P.; Pieters, R. J.; Tauton, J.; Pho, H. Q.; Padwa, A.; Hertzog,
D. L.; Precedo, L. J. Org. Chem. 1991, 56, 820.
(16) Sheehan, S. M.; Padwa, A.; Snyder J. P. Tetrahedron Lett. 1998, 39,
949.
(12) Padwa, A.; Snyder, J. P.; Curtis, E. A.; Sheehan, S. M.; Worsencroft,
K. J.; Kappe, C. O. J. Am. Chem. Soc. 2000, 122, 8155.
(13) Pirrung, M. C.; Morehead, A. T., Jr. J. Am. Chem. Soc. 1994, 116,
8991.
(17) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361.
(14) Hashimoto, S.-I.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1992,
33, 2709. Hashimoto, S.-I.; Watanabe, N.; Ikegami, S. J. Chem. Soc., Chem.
Commun. 1992, 1508. Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.;
See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc.
1993, 115, 958. Cane, D. E.; Thomas, P. J. J. Am. Chem. Soc. 1984, 106,
1650.
(18) For some leading references, see: Arduengo, A. J., III; Krafczyk, R.
Chem. Z. 1998, 32, 6.
(19) Arduengo, A. J., III; Rasika Dias, H. V.; Harlow, R. L.; Kline, M. J.
Am. Chem. Soc. 1992, 114, 5530.
(20) Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms;
Clarenden Press: Oxford,UK, 1993; pp 435-443.
10.1021/ja016928o CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/17/2001