E
M. Bandyopadhyay et al.
Letter
Synlett
In summary, we have developed a new Eu(III)-catalyzed
intramolecular lactonization reaction of -alkenoic acids
leading to -butyrolactones.13 To the best of our knowledge,
it is the first example to use rare-earth-metal triflate to
achieve functionalization of nonactivated terminal double
bond. A variety of 3-aryl--butyrolactones can be accessible
with good-to-excellent yield. An anti-selective product ori-
entation was observed with consistency in a wide range of
substrates. Operational simplicity, broad substrate range,
good yield, and clean reaction profile made this method
more appealing to the chemists. Moreover, our work may
be considered as a step forward to popularize the use of
rare-earth-metal reagent in organic synthesis.
S.; Mei, H.; Han, J.; Pan, Y. J. Org. Chem. 2017, 82, 9824. (d) Paz
Muñoz, M.; Lloyd-Jones, G. C. Eur. J. Org. Chem. 2009, 516.
(e) Keshavarz, M.; Ahmady, A. Z.; Mostoufi, A.; Mohtasham, N.
Molecules 2017, 22, 1385. (f) Maslak, V.; Matović, R.; Saičić, R. N.
Tetrahedron 2004, 60, 8957.
(7) (a) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7,
4553. (b) Taylor, J. G.; Whittall, N.; Hii, K. K. Chem. Commun.
2005, 5103. (c) Adrio, L. A.; Quek, L. S.; Taylor, J. G.; Hii, K. K. Tet-
rahedron 2009, 65, 10334. (d) Amos, R. A.; Katzenellenbogen, J.
A. J. Org. Chem. 1978, 43, 560.
(8) (a) Qian, H.; Han, X.; Wildenhoefer, R. A. J. Am. Chem. Soc. 2004,
126, 9536. (b) Coulombel, L.; Favier, I.; Dunach, E. Chem.
Commun. 2005, 2286. (c) Oe, Y.; Ohta, T.; Ito, Y. Synlett 2005,
179. (d) Komeyama, K.; Morimoto, T.; Nakayama, Y.; Takaki, K.
Tetrahedron Lett. 2007, 48, 3259. (e) Kamiya, I.; Tsunoyama, H.;
Tsukuda, T.; Sakurai, H. Chem. Lett. 2007, 36, 646. (f) Shigehisa,
H.; Hayashi, M.; Ohkawa, H.; Suzuli, T.; Okayasu, H.; Mukai, M.;
Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.; Fukuyama, A.;
Hiroya, K. J. Am. Chem. Soc. 2016, 138, 10597. (g) Ferrand, L.;
Tang, Y.; Aubert, C.; Fensterbank, L.; Mouriè s-Mansuy, V.; Petit,
M.; Amatore, M. Org. Lett. 2017, 19, 2062. (h) Qi, C.; Yang, S.;
Gandon, V.; Leboeuf, D. Org. Lett. 2019, 21, 7405.
Funding Information
Financial support from Council of Scientific and Industrial Research
(CSIR, Grant No. 02(0270)/16/EMR-II), New Delhi and Department of
Science and Technology, Science and Engineering Research Board
(DST-SERB, Grant No. SB/S1/OC-15/2014), New Delhi are most grate-
(9) (a) For reviews, see: Szostak, M.; Fazakerley, N. J.; Parmar, D.;
Proctor, D. J. Chem. Rev. 2014, 114, 5959; and references cited
therein. (b) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96,
307. (c) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem. Int.
Ed. 2009, 48, 7140.
fully acknowledged.
S
c
i
e
n
c
n
d
E
n
g
i
n
e
eri
n
g
R
esearc
h
B
o
ard(SB/S1/OC-15/2
0
1
4)C
o
u
n
c
i
lof
S
c
i
e
ntifi
c
a
n
dI
n
d
ustir
a
lResearc
h
,
I
n
d
i
a
(02(0
2
7
0)/16/E
M
R-I
)
Acknowledgment
(10) (a) Kobayashi, S. Eur. J. Org. Chem. 1999, 15. (b) Ishihara, K.;
Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61,
4560. (c) Giuseppone, N.; Schmitt, J.-L.; Schwartz, E.; Lehn, J.-M.
J. Am. Chem. Soc. 2005, 127, 5528.
We sincerely thank Sophisticated Analytical Instruments Facility
(SAIF), IIEST Shibpur for single-crystal X-ray analysis.
(11) For a review, see: Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam,
W. W.-L. Chem. Rev. 2002, 102, 2227; and references cited
therein.
Supporting Information
Supporting information for this article is available online at
(12) (a) Midland, M. M.; Graham, R. S. J. Am. Chem. Soc. 1984, 106,
4294. (b) Castellino, S.; Sims, J. J. Tetrahedron Lett. 1984, 25,
4059. (c) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1983,
105, 3716. (d) Levin, J. I. Tetrahedron Lett. 1989, 30, 2355.
(e) Terada, M.; Nakai, T.; Mikami, K. Inorg. Chim. Acta 1994, 222,
377. (f) Pellissier, H. Coord. Chem. Rev. 2017, 336, 96.
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) For reviews, see: (a) Lorente, A.; Lamariano-Merketegi, J.;
Albericio, F.; Alvarez, M. Chem. Rev. 2013, 113, 4567; and refer-
ences cited therein. (b) Mihovilovic, M. D.; Bianchi, D. A.;
Rudroff, F. Chem. Commun. 2006, 3214. (c) Albertson, A. K. F.;
Lumb, J. P. Angew. Chem. Int. Ed. 2015, 54, 2204. (d) Lin, Y.-S.;
Lin, J.-S.; Chang, C. C.; Lee, S.-S. J. Nat. Prod. 2015, 78, 181.
(2) For a review on oxacyclic macrodiolide natural products, see:
(a) Kang, E. J.; Lee, E. Chem. Rev. 2005, 105, 4348; and the refer-
ences cited therein. (b) Nasir, N. M.; Ermanis, K.; Clarke, P. A.
Org. Biomol. Chem. 2014, 12, 3323. (c) Zaware, N.; LaPorte, M.
G.; Farid, M.; Liu, L.; Wipf, P.; Floreancig, P. E. Molecules 2011,
16, 3648.
(13) Typical Procedure for the Preparation of Reference Com-
pound 5-Methyl-4-phenyldihydrofuran-2(3H)-one (2a)
A chlorobenzene (0.2 M) solution of the 3-phenylpent-4-enoic
acid (1a, 50 mg, 0.284 mmol) was taken in a 10 mL sealed tube,
and Eu(OTf)3 (5 mol%) was added to it. Nitrogen gas was flushed
into it; the tube was closed and placed it in a silicon oil bath.
After 7 h heating the starting material was completely con-
sumed as indicated by TLC, and the reaction was quenched by
adding water. Compound was extracted with ethyl acetate (3 ×
20 mL). Combined organic layer was washed with brine solu-
tion, dried over sodium sulfate, and evaporated to dryness. The
crude product was purified on silica gel (mesh 100–200)
column chromatography using ethyl acetate in petroleum ether
(1:2) as eluent to afford 2a (35 mg, 70%) as yellow oil. IR: 1775
(3) (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. (b) Cradilo, G.;
Orena, M. Tetrahedron 1990, 46, 3321.
(4) (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. 1985, 24,
94. (b) Cava, A.; Cortes, D.; Figureadere, B.; Hocquemiller, R.;
Laprevote, O.; Laurens, A.; Leboeuf, M. In Phytochemical Poten-
tial of Tropical Plants; Downum, K. R.; Romeo, J. T.; Stafford, H.,
Ed.; Plenum Press: New York, 1993, 167.
cm–1 1H NMR (400 MHz, CDCl3): = 7.39–7.24 (m, 5 H), 4.55
.
(ddd, J = 12, 8.6, 6.2 Hz, 1 H), 3.25 (td, J = 11.2, 6.2 Hz, 1 H), 2.95
(dd, J = 16, 8.4 Hz, 1 H), 2.79 (dd, J = 16, 11.2 Hz, 1 H), 1.42 (d, J =
6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): = 175.5, 138.2, 129.1,
127.8, 83.2, 49.7, 37.5, 19.2. HRMS: m/z [M + H]+ – H2O calcd for
(5) Lepoittevin, J.-P.; Berl, V.; Giménez-Arnau, E. Chem. Rec. 2009, 9,
258.
C
11H12O2: 159.0837; found: 159.0843.
(6) (a) Mandal, S. K.; Amin, S. R.; Crowe, W. E. J. Am. Chem. Soc.
2001, 123, 6457. (b) Zhu, Y.-L.; Xiang, H.-W.; Wu, G.-S.; Bai, L.;
Li, Y.-W. Chem. Commun. 2002, 254. (c) Sha, W.; Zhang, W.; Ni,
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–E