13C NMR (75 MHz, CDCl3), d = 162.003, 67.765, 55.937,
54.128
3 Y. Masashi, EP pat., 0 450 892 A1, 1991.
4 E. Rogers, Harry-O’Kurn, Peoria, US pat., 7 351 403 B2, 2008.
5 Y. Shi, Qing-Xi Chen, Q. Wang, K. Song and L. Qiu, Food Chem.,
2005, 92, 707–712.
3.4 Cinnamic acid formation reaction: a typical procedure: by
conventional method (1a–3a)
6 R. C. Beavis, B. T. Chait and H. M. Fales, Rapid Commun. Mass
Spectrom., 1989, 3, 432–435.
7 (a) J. A. Joule, K. Mills, Heterocyclic Chemistry., 4th ed., 2000, pp.
170–189; (b) W. F. Ringk, in Kirk Othmer Encyclopedia of Chemical
Technology., 3rd ed., 1981, vol. 6, pp.143–149.
8 (a) W. H. Perkin, J. Chem. Soc., 1867, 20, 586; (b) G. Bacharach
and F. Brogan, J. Am. Chem. Soc., 1928, 50, 3333; (c) S. Kahn, N. J.
Rutherford, US pat., 3 813 414, 1974.
9 (a) E. Koepp, Synthesis, 1987, 177–179; (b) M. Aslam, W. F.
Stansbury, R. J. Reiter and D. R. Larkin, J. Org. Chem., 1997, 62,
1550–1552.
In a typical reaction, benzaldehyde (0.5 g, 4.7 mmol), acetic
anhydride (0.96 g, 9.4 mmol) and sodium acetate trihydrate
(1.93 g, 14.1 mmol) were mixed and stirred at 140 ◦C for 9 h
in round bottom flask fitted with reflux condenser. The reaction
was monitored on TLC. The reaction mass quenched in 20 ml
ice cold water and acidified with 1 : 1 aqueous hydrochloric acid.
Precipitated solid was filtered, washed with cold water and dried
at 40 ◦C.
10 (a) J. R. Johnson, Org. React., 1942, 1, 210; (b) J. R. Jhonson, Org.
Syn. Coll., 1955, 3, 426.
11 R. E. Ruckles, J. Chem. Educ., 1950, 27, 210.
12 R. Kern, DE Pat., 3 139 994, 1983.
3.5 Recycling study of choline chloride: urea (DES)
13 M. G. Mihaiescu, N. Vasile, T. Sachelarie, RO Pat., 90 224, 1986.
14 W. R. Peterson, US Pat., 2 401 099, 1986.
Benzaldehyde (10 g, 94 mmol), acetic anhydride (9.63 g, 94
mmol) and deep eutectic solv◦ent (30 ml) were mixed and stirred
at room temperature 30 2 C in a round bottom flask fitted
with guard tube. After 4 h, the reaction mixture became viscous
and solidified. The reaction was monitored by TLC. After
completion of reaction, water was added. The DES being soluble
in water comes in the water layer. The solid was separated by
filtration, purified from water and methanol and dried in oven
under vacuum (yield = 92%). The deep eutectic solvent was
recovered from the filtrate by evaporating the water phase at 80
◦C under vacuum. The recycled deep eutectic solvent was used
for the next batch and recycled again. (Table 2)
15 (a) W. J. Houlihan, J. Nadelson, US Pat., 3 870 751, 1975; (b) J. E.
Telschow, US Pat., 4 571 432, 1986.
16 N. A. Bumagin, N. P. Andryukhova and I. P. Beletskaga, Metalloorg.
Khim., 1989, 2, 911.
17 J. H. Teles, N. Rieber, K. Breuer, D. Demuth, H. Hibst, H. Etzrodt,
U. Rheude, US Pat., 6 211 416, 1999.
18 (a) K. Karl, K. Thomas, S. Heinrich, DE Pat., 3 437 624, 1986; (b) G.
Ihl, G. Roscher, N. Mayer, DE Pat., 3 743 616, 1988.
19 (a) B. Ramesh Babu and K. K. Balasubramaniam, Org. Prep. Proced.
Int., 1994, 26, 123; (b) E. Dalacanale, G. Bottaccio, S. Compolmi,
F. Montamari, EP Pat., 0 146 373, 1985; (c) H. Harada, EP Pat.,
0 170 520, 1986.
20 H. Heinz, Y. Peres and A. Milchereit, J. Organomet. Chem., 1986,
307, C38.
21 (a) M. Hajek, J. Malek and P. Silhavy, CS Pat., 217 518, 1983; (b) M.
Hajek, P. Silhavy, DE Pat., 3 524 475, 1986; (c) M. Hajek, J. Malek,
P. Silhavy, CS Pat., 209 347, 1981.
4. Conclusion
22 J. F. J. dippy and R. M. Evans, J. Org. Chem., 1950, 15, 451–456.
23 S. John and J. Sardella, J. Am. Chem. Soc., 1950, 72, 4322–4323.
24 C. Ping, G. Liangjun and T. Tao, Huaxue Yu Shengwu Gongcheng,
2008, 25, 18–20.
25 Teng and Yefang, Shiyou Huagong Yingyong, 2008, 27, 8–9.
26 L. Jianfen and C. Hongmei, Jingxi Shiyou Huagong, 2007, 24, 34–37.
27 C. I. Chiriac, F. Tanasa and M. Onciu, Tetrahedron Lett., 2003, 44,
3579–3580.
28 C. I. Chiriac, F. Tanasa and M. Onciu, Molecules, 2005, 10, 481–487.
29 E. Veverkova, E. Pacherova and S. Toma, Chem. Pap., 1999, 53, 257–
259.
30 R. D. Pace and L. McWilliams, J. Ark. Acad. Sci., 2006, 60, 96–100.
31 H. Khabazzadeh, R. M. Nejad, H. Sheibani and K. Saidi, Catal.
Commun., 2007, 8, 1411–1413.
32 K. H. M. Sampath, R. B. V. Subba and R. P. Thirupathi, Org. Prep.
Proced. Int., 2000, 32, 81.
33 A. K. Sinha,*, V. Kumar, A. Sharma, A. Sharma and R. Kumar,
Tetrahedron, 2007, 63, 11070–11077.
34 J. Weng, C. Wang, H. Li and Y. Wang, Green Chem., 2006, 8, 96–99.
35 (a) S. B. Phadtare and G. S. Shankarling, Green Chem., 2010, 12,
458–465; (b) Y. A. Sonawane, S. B. Phadtare, B. N. Borse, A. R.
Jagtap and G. S. Shankarling, Org. Lett., 2010, 12, 1456–1459.
36 (a) K. Prasad, D. V. Pinjari, A. B. Pandit and S. T. Mhaske, Ultrason.
Sonochem., 2010, 17, 409–415; (b) K. Prasad, D. V. Pinjari, A. B.
Pandit and S. T. Mhaske, Ultrason. Sonochem., 2010, 17, 697–703;
(c) D. V. Pinjari and A. B. Pandit, Ultrason. Sonochem., 2010, 17,
845–852.
Perkin condensation using biodegradable ammonium deep
eutectic solvent based on choline chloride and urea provides an
efficient and convenient method for the synthesis of cinnamic
acid and their derivatives. This method offers marked improve-
ments in terms of decreased reaction time, general applicability,
good isolated product yields, energy efficient reaction and the
use of environmentally benign procedures and solvents. This
method also eliminates the use of hazardous organic solvents
and toxic catalysts, and thus provides a better and practical
alternative to existing methods. Deep eutectic solvents provide a
good alternative for industrial synthesis as the reaction is readily
scalable. The recyclability and biodegradability of deep eutectic
solvent makes the process greener and economically more viable
for the synthesis of cinnamic acid as compared to the reported
protocols.
Acknowledgements
Authors are thankful to chemistry department, ICT, Mumbai,
for recording FT-IR. One of the authors, Ms Poonam M. Pawar,
is thankful to CAS-UGC for a fellowship.
37 K. J. Jarag, D. V. Pinjari, A. B. Pandit and G. S. Shankarling,
Ultrason. Sonochem., 2011, 18, 617–623.
38 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra,
Inorg. Chem., 2005, 44, 6497.
39 A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V.
Tambyrajah, Chem. Commun., 2003, 70.
40 T. Razzaq, J. M. Kremsner and C. O. Kappe, J. Org. Chem., 2008,
73, 6321–6329.
41 T. A. Wittstruck and E. N. Trachtenberg, J. Am. Chem. Soc., 1967,
89, 3803–3849.
References
1 Y. Aoyagi, N. Masuko, S. Ohkubo, M. Kitade, K. N. Shinji Okazaki
Konstanty Wierzba, T. Terada, Y. Sugimoto and Y. Yamada, Cancer
Sci., 2005, 96, 614.
2 J. Kanaani and H. Ginsburg, Antimicrob. Agents Chemother., 1992,
2, 1102–1108.
2134 | Green Chem., 2011, 13, 2130–2134
This journal is
The Royal Society of Chemistry 2011
©