1508
X. Mao et al.
LETTER
(
3) (a) Kim, J.; Yun, M. H.; Anant, P.; Cho, S.; Jacob, J.; Kim,
J. Y.; Yang, C. Chem. Eur. J. 2011, 17, 14681. (b) Taso, H.
N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.;
Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Mullen, K.
J. Am. Chem. Soc. 2011, 133, 2605.
(11) Sang, G.; Zou, Y.; Li, Y. J. Phys. Chem. C 2008, 112, 12058.
(12) Lee, J.; Lee, J. I.; Park, M. J.; Jung, Y. K.; Cho, N. S.; Cho,
H. J. Hwang D. H.; Lee, S. K.; Park, J. H.; Hong, J.; Chu, H.
Y.; Shim, H. K. Polym. Chem. 2007, 45, 1236.
(13) Guerrero, M.; Urbano, M.; Velaparthi, S.; Zhao, J.;
Schaeffer, M. T.; Brown, S.; Rosen, H.; Roberts, E. Bioorg.
Med. Chem. Lett. 2011, 21, 3632.
(
4) (a) Wang, M.; Hu, X. W.; Liu, P.; Li, W.; Gong, X.; Huang,
F.; Cao, Y. J. Am. Chem. Soc. 2011, 13, 9638. (b) Zhou, E.
J.; Cong, J. Z.; Tajima, K.; Hashimoto, K. Chem. Mater.
(14) Synthesis Procedures for the BTA-Based Conjugated
Polymers
2
010, 22, 4890. (c) Cui, C. H.; Fan, X.; Zhang, M. J.; Zhang,
J.; Min, J.; Li, Y. F. Chem. Commun. 2011, 47, 11345.
d) Huo, L. J.; Hou, J. H.; Zhang, S. Q.; Chen, H. Y.; Yang,
Synthesis of P1
(
To a 100 mL Schlenk flask, M-1 (0.14 g, 0.05 mmol), M2
(0.31 g, 0.05 mmol), Pd(PPh ) (2.9 mg, 0.03 mmol), and
Y. Angew. Chem. Int. Ed. 2010, 122, 1542. (e) Bronstein, H.;
Chen, Z. Y.; Ashraf, R. S.; Zhang, W. M.; Du, J. P.; Durrant,
J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.;
Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.;
Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem.
Soc. 2011, 133, 3272.
3
4
CuI (0. 5 mg, 0.003 mmol) were added in 10 mL THF and
Et N (6 mL) under N atmosphere. The mixture was stirred
3
2
at 90 °C for 2 d. The solvent was evaporated under vacuum
after the mixture was cooled to r.t. The residue was dissolved
and in CH Cl (100 mL) and filtered; the filtrate was then
2
2
(
5) (a) Ma, X.; Mao, X. R.; Zhang, S. W.; Huang, X. B.; Cheng,
Y. X.; Zhu, C. J. Polym. Chem. 2013, 4, 520. (b) Wu, Y. Z.;
Ma, X.; Jiao, J. M.; Cheng, Y. X.; Zhu, C. J. Synlett 2012,
concentrated and added to MeOH to precipitate the polymer.
The polymer was dried in vacuum to give 210 mg of product
in 58% yield. GPC results: M = 17240, M = 10740,
w
n
1
2
3, 778. (c) Wang, X. C.; Chen, S.; Sun, Y. P.; Zhang, M. J.;
Li, Y. F.; Li, X. Y.; Wang, H. Q. Polym. Chem. 2011, 2,
872. (d) Baek, N. S.; Hau, S. K.; Yip, H. L.; Acton, O.;
Chen, K. S.; Jen, A. K. Y. Chem. Mater. 2008, 20, 5734.
e) Wang, X. C.; Sun, Y. P.; Chen, S.; Guo, X.; Zhang, M.
J.; Li, X. Y.; Li, Y. F.; Wang, H. Q. Macromolecules 2012,
5, 1208. (f) Woo, C. H.; Beaujuge, P. M.; Holcombe, T.
W.; Lee, O. P.; Fréchet, J. M. J. J. Am. Chem. Soc. 2010, 132,
PDI = 1.54. H NMR (300 MHz, CDCl ): δ = 7.24–7.21 (m,
3
6 H), 6.69–6.66 (m, 2 H), 3.77–3.76 (m, 4 H), 1.75–0.85 (m,
50 H). Anal. Calcd for (C H N S) : C, 78.85; H, 9.10; N,
2
4
8
64
4
n
7.66; S, 4.39. Found: C, 78.23; H, 9.16; N, 7.84; S, 4.27.
Synthesis of P2
(
P2 was synthesized from monomers M-1 and M-3 in 70%
yield by following in the same procedure used for the
preparation of P1. GPC results: M = 17240, M = 10050,
4
w
n
1
15547. (g) Zhang, M. J.; Guo, X.; Li, Y. F. Macromolecules
PDI = 1.72. H NMR (300 MHz, CDCl ): δ = 8.45–7.23 (m,
3
2
011, 44, 8798. (h) Bundgaard, E.; Krebs, F. C. Sol. Energy
1 H), 8.21–8.19 (m, 2 H), 7.78–7.16 (m, 5 H), 4.80–4.76 (m,
2 H), 4.20–4.06 (m, 2 H), 1.21–0.85 (m, 50 H). Anal. Calcd
for (C H N O S) : C, 75.55; H, 8.72; N, 7.34; S, 4.20.
Found: C, 75.64; H, 8.63; N, 7.17; S, 4.28.
Synthesis of P3
Mater. Sol. Cells 2007, 91, 954. (i) Cheng, Y. J.; Yang, S.
H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. (j) Chen, J.; Cao,
Y. Acc. Chem. Res. 2009, 42, 1709. (k) Popere, B. C.; Pelle,
A. M. D.; Thayumanavan, S. Macromolecules 2011, 44,
4
8
62
4
2
n
4
2
767. (l) Duan, C. H.; Huang, F.; Cao, Y. J. Mater. Chem.
012, 22, 10416.
P3 was synthesized from monomers M1 and M4 in
73%yield by following the same procedure used for the
preparation of P1. GPC results: M = 15780, M = 12850,
(
6) (a) Patel, D. G.; Feng, F.; Ohnishi, Y. Y.; Abboud, K. A.;
w
n
1
Hirata, S.; Schanze, K. S.; Reynolds, J. R. J. Am. Chem. Soc.
PDI = 1.23. H NMR (300 MHz, CDCl ): δ = 7.80–8.53 (m,
3
2
012, 134, 2599. (b) Baran, D.; Balan, A.; Celebi, S.;
2 H), 7.40–7.28 (m, 2 H), 7.12–6.81 (m, 6 H), 5.21–4.79 (br,
2 H), 3.83–3.81 (br, 2 H), 2.16–0.84 (m, 50 H). Anal. Calcd
for: (C H N S ) : C, 75.29; H, 7.67; N, 6.27; S, 10.77.
Found: C, 75.18; H, 7.76; N, 6.12; S, 10.95.
Synthesis of P4
Esteban, B. M.; Neugebauer, H.; Sariciftci, N. S.; Toppare,
L. Chem. Mater. 2010, 22, 2978. (c) Hızalan, G.; Balan, A.;
Baran, D.; Toppare, L. J. Mater. Chem. 2011, 21, 1804.
7) Zhang, Z. H.; Peng, B.; Liu, B.; Pan, C. Y.; Li, Y. F.; He, Y.
H.; Zhou, K. C.; Zou, Y. P. Polym. Chem. 2010, 1, 1441.
8) Zhang, L. J.; He, C.; Chen, J. W.; Yuan, P.; Huang, L.;
Zhang, C.; Cai, W. Z.; Liu, Z. T.; Cao, Y. Macromolecules
5
6
68
4 3 n
(
(
P4 was synthesized from monomers M1 and M5 in 73%
yield by following the same procedure used for the
preparation of P1. GPC results: M = 17910, M = 10080,
w
n
1
2
010, 43, 9771.
PDI = 1.78. H NMR (300 MHz, CDCl ): δ = 8.34–8.32 (m,
3
(
9) Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W.
2 H), 7.84–7.83 (m, 2 H), 7.60–6.31 (m, 8 H), 4.80–4.82 (br,
2 H), 4.18–4.17 (br, 2 H), 2.26–0.59 (m, 50 H). Anal. Calcd
for (C H N O S ) : C, 72.69; H, 7.41; N, 6.05; O, 3.46; S,
J. Am. Chem. Soc. 2011, 133, 4625.
(
10) Peng, B.; Najari, A.; Liu, B.; Berrouard, P.; Gendron, D.; He,
5
6
66
4
2 3 n
Y.; Zhou, K.; Zou, Y.; Leclerc, M. Macromol. Chem. Phys.
10.40. Found: C, 72.76; H, 7.36; N, 6.01; O, 3.49; S, 10.37.
2
010, 211, 2026.
Synlett 2013, 24, 1505–1508
© Georg Thieme Verlag Stuttgart · New York