Please do not adjust margins
Chemical Science
Page 6 of 8
ARTICLE
Journal Name
concentrations ranging from 1 to 16 µM for 24 h, thus confirming We thank NNSFC (21672113, 21432004,View2A1r7tic7le2O0n9lin9e,
DOI: 10.1039/C9SC00026G
the low cytotoxicity of the assembly. Confocal laser scanning 21861132001 and 91527301) for financial support.
microscopy revealed that the cells initially emitted blue Notes and references
1
(a) L. Fang, M. A. Olson, D. Benitez, E. Tkatchouk, W. A.
Goddard, J. F. Stoddart, Chem. Soc. Rev. 2010, 39, 17-29; (b)
H. X. Wang, Z. Meng, J. F. Xiang, Y. X. Xia, Y. H. Sun, S. Z. Hu,
H. Chen, J. N. Yao, C. F. Chen, Chem. Sci. 2016, 7, 469-474. (c)
Z. J. Zhang, H. Y. Zhang, H. Wang, Y. Liu, Angew. Chem., Int.
Ed. 2011, 50, 10834-10838.
(a) K. Iwaso, Y. Takashima, A. Harada, Nat. Chem. 2016, 8,
625-632; (b) M. R. Panman, C. N. van Dijk, A. Huerta-Viga, H.
J. Sanders, B. H. Bakker, D. A. Leigh, A. M. Brouwer, W. J.
Buma, S. Woutersen, Nat. Commun. 2017, 8, 1.
(a) A. Ulfkjaer, F. W. Nielsen, H. Al-Kerdi, T. Ruβ, Z. K.
Nielsen, J. Ulstrup, L. L. Sun, K. Moth-Poulsen, J. D. Zhang, M.
Pittelkow, Nanoscale 2018, 10, 9133-9140; (b) M. W.
Ambrogio, C. R. Thomas, Y. L. Zhao, J. I. Zink, J. F. Stoddart,
Acc. Chem. Res. 2011, 44, 903-913.
fluorescence in the cytoplasm under the UV irradiation (365 nm)
(Fig. 5a), and then gradually emitted white fluorescence after 1 min
of irradiation, which remained stable for further irradiation (Fig. 5b).
Thus, this assembly could be used to tag cells with white
fluorescence. As we know, most of fluorescence dyes only exhibit
blue, green, red or yellow fluorescence during cell imaging.15,23 It is
necessary to develop novel staining systems with other
fluorescence emission properties when more than four
fluorescence signals are needed. The Eu3+γ-CD·12 assembly with
white light emission provides the fifth kind of fluorescence signal,
and hence would have a wide application in multi-color imaging for
biological studies.
2
3
4
5
(a) S. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C.
T. McTernan, D. J. Tetlow, M. R. Wilson, Science 2017, 358,
340-343; (b) S. Kassem, A. T. L. Lee, D. A. Leigh, V. Marcos, L.
I. Palmer, S. Pisano, Nature 2017, 549, 374-378; (c) M.
Mohankumar, M. Holler, E. Meichsner, J. F. Nierengarten, F.
Niess, J. P. Sauvage, B. Delavaux-Nicot, E. Leoni, F. Monti, J.
M. Malicka, M. Cocchi, E. Bandini, N. Armaroli, J. Am. Chem.
Soc. 2018, 140, 2336-2347.
(a) X. Ma, H. Tian, Chem. Soc. Rev. 2010, 39, 70-80; (b) X.
Hou, C. Ke, C. J. Bruns, P. R. McGonigal, R. B. Pettman, J. F.
Stoddart, Nat. Commun. 2015, 6, 6884; (c) M. Inouye, K.
Hayashi, Y. Yonenaga, T. Itou, K. Fujimoto, T. Uchida, M.
Iwamura, K. Nozaki, Angew. Chem., Int. Ed. 2014, 53, 14392-
14396; (d) L. D. Movsisyan, M. Franz, F. Hampel, A. L.
Thompson, R. R. Tykwinski, H. L. Anderson, J. Am. Chem. Soc.
2016, 138, 1366-1376.
6
7
8
(a) G. M. Farinola, R. Ragni, Chem. Soc. Rev. 2011, 40, 3467-
3482; (b) O. Kotova, S. Comby, C. Lincheneau, T.
Gunnlaugsson, Chem. Sci. 2017, 8, 3419-3426; (c) S. Reineke,
F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K.
Leo, Nature 2009, 459, 234-238.
(a) B. W. D' Andrade, S. R. Forrest, Adv. Mater. 2004, 16,
1585-1595; (b) K. T. Kamtekar, A. P. Monkman, M. R. Bryce,
Adv. Mater. 2010, 22, 572-582; (c) L. L. Zhu, C. Y. Ang, X. Li, K.
T. Nguyen, S. Y. Tan, H. Agren, Y. L. Zhao, Adv. Mater. 2012,
24, 4020-4024.
(a) M. M. Shang, C. X. Li, J. Lin, Chem. Soc. Rev. 2014, 43,
1372-1386; (b) N. Willis-Fox, M. Kraft, J. Arlt, U. Scherf, R. C.
Evans, Adv. Funct. Mater. 2016, 26, 532-542. (c) X. Feng, C. X.
Qi, H. T. Feng, Z. Zhao, H. H. Y. Sung, I. D. Williams, R. T. K.
Kwok, J. W. Y. Lam, A. J. Qin, B. Z. Tang, Chem. Sci. 2018, 9,
5679–5687.
(a) R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam,
P. E. L. G. Leclere, R. P. Sijbesma, E. W. Meijer, A. P. H. J.
Schenning, J. Am. Chem. Soc. 2009, 131, 833-843; (b) Z. Y.
Zhang, B. Xu, J. H. Su, L. P. Shen, Y. S. Xie, H. Tian, Angew.
Chem., Int. Ed. 2011, 123, 11858-11861; (c) Q. Zhao, Y. Chen,
S. H. Li, Y. Liu, Chem. Commun. 2018, 54, 200-203.
Fig. 5 Confocal fluorescence images of A549 cells with Eu3+γ-CD·12
([Eu3+]= 2 μM, [γ-CD] = 4 μM, [12] = 8 µM, ) for (a) 0 min, (b) 1 min
under UV at 25 °C.
Conclusions
In conclusion, we have successfully constructed a photo-
tunable supramolecular assembly from γ-CD, anthracene-
modified DPA and lanthanide metal via the time-dependent
photo-crosslink reaction. The resultant supramolecular
assembly possessed dual emission properties, i.e. a red-light
emission of Eu(III) and a blue-light emission of anthyl-modified
DPA. Through controllably adjust the light irradiation time, the
supramolecular assembly could emit fluorescence with various
colors (especially white light) in several environments such as
aqueous solution, solid film and especially living cell, which
enabled the potential application of this photomodulated
multi-color assembly as a tunable photochromic fluorescence
ink and cell labelling. We believe this could provide a new
strategy for the information processing and biological imaging.
9
10 Q. W. Zhang, D. F. Li, X. Li, P. B. White, J. Mecinovic, X. Ma, H.
Agren, R. J. M. Nolte, H. Tian, J. Am. Chem. Soc. 2016, 138,
13541-13550.
11 X. L. Ni, S. Y. Chen, Y. P. Yang, Z. Tao, J. Am. Chem. Soc. 2016,
138, 6177-6183.
12 S. H. Li, X. F. Xu, Y. Zhou, Q. Zhao, Y. Liu, Org. Lett. 2017, 19,
6650-6653.
13 (a) H. B. Cheng, H. Y. Zhang, Y. Liu, J. Am. Chem. Soc. 2013,
135, 10190-10193; (b) M. Isaac, S. A. Denisov, A. Roux, D.
Imbert, G. Jonusauskas, N. D. McClenaghan, O. Seneque,
Angew. Chem. 2015, 127, 11615-11618; (c) Y. Zhou, H. Y.
Zhang, Z. Y. Zhang, Y. Liu, J. Am. Chem. Soc. 2017, 139, 7168-
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins