FULL PAPER
Chem. 2006, 78, 721–730; e) P. Arsenyan, A. Petrenko,
K. Leitonas, D. Volyniuk, J. Simokaitiene, T. Klinavičius,
E. Skuodis, J.-H. Lee, J. V. Gražulevičius, Inorg. Chem.
Lett. 1992, 33, 5137–5140; c) Z. Tang, J. Mayrargue, M.
Alami, Heterocycl. Chem. 2011, 48, 1238–1242; d) J.
Xu, X. Yu, J. Yan, Q. Song, Org. Lett. 2017, 19, 6292–
6295; e) D. Wan, Y. Yang, X. Liu, M. Li, S. Zhao, J.
You, Eur. J. Org. Chem. 2016, 2016, 55–59; f) D. P.
Hari, T. Hering, B. König, Org. Lett. 2012, 14, 20, 5334–
5337; g) K. M. Aumann, P. J. Scammels, J. M. White,
C. H. Schiesser, Org. Biomol. Chem. 2007, 5, 1276–
1281; h) M. K. Staples, R. L. Grange, J. A. Angus, J.
Ziogas, N. P. H. Tan, M. K. Taylor, C. H. Schiesser, Org.
Biomol. Chem. 2011, 9, 473–479; i) D. Yang, K. Yan, W.
Wei, L. Tian, Q. Li, J. You, H. Wang, RSC Adv. 2014, 4,
48547–48553; j) E. Ramesh, M. Shankar, S. Dana, A. K.
Sahoo, Org. Chem. Front. 2016, 3, 1126–1130.
2
019, 58, 15, 10174–10183.
[
9] a) T. Ghosh, M. Lehmann, J. Mater. Chem. C 2017, 5,
1
2308–12337; b) M. Funahashi, J.-I. Hanna, Adv. Mater.
2
005, 17, 594–598; c) J. Mei, Y. Diao, A. L. Appleton,
L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724–
746.
10] a) C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev.
012, 112, 2208–2267; b) P. Bujak, I. Kulszewicz-Bajer,
6
[
2
M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc.
Rev. 2013, 42, 8895–8999.
[
11] a) D. Yue, R. C. Larock, J. Org. Chem. 2002, 67, 1905–
1
4
909; b) K. O. Hessian, B. L. Flynn, Org. Lett. 2003, 5, [14] a) G. V. P. Chandramouli, B. Prasanna, P. N. Kumar,
377–4380; c) B. L. Flynn, P. Verdier-Pinard, E. A.
P. V. Reddy, Phosphorus Sulfur Silicon Relat. Elem.
2002, 177, 511–522; b) P. Faller, F. Montovani, Bull.
Soc. Chim. France 1972, 4, 1643; c) A. Machora, V.
Kozmík, M. Pajoravá, H. Dvorácová, J. Svoboda,
Collect. Czech. Chem. Commun. 2009, 74, 785–798;
d) J. Mlochowski, Phosphorus Sulfur Silicon Relat.
Elem. 2008, 1183, 931–938; e) K. Kloc, J. Mlochowski,
Tetrahedron Lett. 2001, 42, 4899–1902; f) S. Bonagiri,
A. Acharya, M. A. Pasha, I. Hiriyakkanavar, Tetrahedron
Lett. 2017, 58, 4577–4582; g) C. Wu, W. Chen, D. Jiang,
X. Jiang, J. Shen, Org. Process Res. Dev. 2015, 19, 555–
558.
Hamel, Org. Lett. 2001, 3, 651–654; d) C. T. Bui, B. L.
Flynn, J. Comb. Chem. 2006, 8, 163–167; e) B. L. Flynn,
G. P. Flynn, E. A. Hamel, M. K. Jung, Bioorg. Med.
Chem. Lett. 2001, 11, 2341–2343; f) J. A. Roehrs, R. P.
Pistoia, D. F. Back, G. Zeni, J. Org. Chem. 2015, 80,
1
2470–12841; g) R. P. Pistoia, J. A. Roehrs, D. F. Back,
G. Zeni, Org. Chem. Front. 2017, 4, 277–282; h) A.
Gupta, B. L. Flynn, Org. Lett. 2017, 19, 1939–1941;
i) K. K. Casola, M. R. Gomes, D. F. Back, G. Zeni, J.
Org. Chem. 2018, 83, 6706–6718; j) T. Kesherwani,
A. S. Worlikar, R. C. Larock, J. Org. Chem. 2006, 71,
2
307–2312; k) S. Mehta, J. P. Waldo, R. C. Larock, J. [15] a) A. Acharya, S. V. Kumar, B. Saraiah, H. Ila, J. Org.
Org. Chem. 2009, 74, 1141–1147; l) B. Godoi, R. F.
Shumacher, G. Zeni, Chem. Rev. 2011, 111, 2937–2980;
m) R. C. Larock, Acetylene Chemistry, Biology and
Material Science, 1st, Vol. 2 (Eds.: F. Diederich,
P. J.Stang, R. R. Tykwinski), Wikey-VCH, New York,
Chem. 2015, 80, 2884–2892; b) T. Sato, I. Nakamura, M.
Terada, Eur. J. Org. Chem. 2009, 32, 5509–5512; c) N.
Yoshikay, B. Wu, Angew. Chem. Int. Ed. 2013, 52,
10496–10499; Angew. Chem. 2013, 125, 10690–10693;
d) M. Nakamura, L. Ilies, S. Otsubo, E. Nakamura,
Angew. Chem. Int. Ed. 2006, 45, 944–947; Angew. Chem.
2006, 118, 958–961; e) T. Yamagushi, F. Shibahara, T.
Murai, Tetrahedron Lett. 2016, 57, 2945–2948; f) Y.
Terao, T. Satoh, M. Miura, M. Nomura, Bull. Chem. Soc.
Jpn. 1999, 72, 2345–2350; g) J.-S. Han, S.-Q. Chem, P.
Zhong, X.-H. Zhang, Synth. Commun. 2014, 44, 3148–
3155; h) W. Zeng, H. Jiang, L. Huang, Y. Sun, Z. Che,
X. Li, Chem. Commun. 2013, 49, 6611–6613; i) Y.
Masuya, M. Tobisa, N. Chatani, Org. Lett. 2016, 18,
4312–4315; j) I. Nakamura, T. Sato, Y. Yamamoto,
Angew. Chem. Int. Ed. 2006, 45, 4473–4475; Angew.
Chem. 2006, 118, 4585–4587; k) I. Nakamura, T. Sato,
M. Terada, Y. Yamamoto, Org. Lett. 2007, 9, 4081–4083;
l) M. Kuhn, F. C. Falk, J. Paradies, Org. Lett. 2011, 13,
4100–4103; m) V. Guilarte, M. A. Fernandez-Rodriguez,
P. Garcia-Garcia, E. Hernando, R. Sanz, Org. Lett. 2011,
13, 5100–5103; n) S. G. Newman, V. Aureggi, C. S.
Bryan, M. Lautens, Chem. Commun. 2009, 35, 5236–
5238; o) C. S. Bryan, J. A. Braunger, M. Lautens, Angew.
Chem. Int. Ed. 2009, 48, 7064–7068; Angew. Chem.
2009, 121, 7198–7202; p) K. Inamoto, Y. Arai, K.
Hiroya, T. Doi, Chem. Commun. 2008, 2008, 5529–5531;
q) P. Maity, D. Kundu, R. Roy, B. C. Ranu, Org. Lett.
2014, 16, 4122–4125; r) C. Walter, N. Fallows, T.
Kesharwani, ACS Omega 2019, 4, 6358–6545; s) P. Sun,
2
005, pp 51–99; n) F. Rodriguez, F. J. Fanns, Handbook
of Cyclization Reactions, 1st, Vol. 2 (Eds.: S. Ma),
Wiley-VHC, Weinheim 2009, pp 951–990; o) D. Alves,
C. Luchese, C. W. Nogueira, G. Zeni, J. Org. Chem.
2
007, 72, 6726–6734; p) J. S. S. Neto, B. A. Iglesias,
D. F. Back, G. Zeni, Adv. Synth. Catal. 2016, 358, 3572–
585; q) R. M. Gay, F. Manarin, C. C. Schneider, D. A.
Barancelli, M. D. Costa, G. Zeni, J. Org. Chem. 2010,
5, 5701–5706; r) A. L. Stein, F. N. Bilheri, A. R.
Rosário, G. Zeni, Org. Biomol. Chem. 2013, 11, 2972–
978.
3
7
2
[
12] a) Y. Li, L. Cheng, X. Liu, B. Li, N. Sun, Beilstein J.
Org. Chem. 2014, 10, 2886–2891; b) K. Takimiya, Y.
Konda, H. Ebata, N. Niihara, T. Otsubo, J. Org. Chem.
2
005, 70, 10569–10571; c) H. Sashida, K. Sadamori, T.
Tsuchiya, Synth. Commun. 1998, 28, 713–727; d) T.
Kashiki, S. Shinamura, M. Kohara, E. Miyazaki, K.
Takimiya, M. Ikeda, H. Kuwabara, Org. Lett. 2009, 11,
2
1
473–2475; e) E. Hernando, R. Sanz, Org. Lett. 2011,
3, 5100–5103; f) P. Oechsle, P. Hou, U. Florke, J.
Paradies, Adv. Synth. Catal. 2016, 358, 3770–3776; g) P.
Oechesle, U. Florke, H. Egold, J. Paradies, Chem. Eur. J.
2
016, 22, 18559–18563.
13] a) X.-F. Xia, G.-W. Zhang, S.-L. Zhu, Tetrahedron 2017,
3, 2727–2730; b) C. H. Schiesser, K. Sutej, Tetrahedron
[
7
Adv. Synth. Catal. 2021, 363, 1–10
8
© 2021 Wiley-VCH GmbH
��
These are not the final page numbers!