1
1
4. F. Toriyama, J. Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S.
intracomplex electron transfer from a catechol moiety to the
phthalimide moiety would immediately precede decarboxy-
lative fragmentation (19, 33). We also wondered about the
reversibility of the C–B bond formation and thus the stabil-
ity of the boronic esters under the reaction conditions as it
has been shown that they can be useful precursors to alkyl
radicals in the presence of either in-situ generated oxygen-
centered radicals (34–36) or good Lewis bases such as
DMAP (37). However, we only observed consumption of
product upon conducting the reaction at high concentra-
tions of reaction partners (~1 m) or by conducting the reac-
tion at elevated temperatures. The distinct structural
features of the substrates that did not give the desired bo-
ronic ester products, namely, flexible tertiary, secondary
benzylic, and α-heteroatom carboxylic acids, suggest that
the putative intermediate alkyl radicals probably underwent
single-electron oxidation to the stable carbenium ions rather
than borylation.
1
5. K. M. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A. M. Spiewak, K. A.
Johnson, T. A. DiBenedetto, S. Kim, L. K. G. Ackerman, D. J. Weix,
Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with
6. J. Wang, T. Qin, T.-G. Chen, L. Wimmer, J. T. Edwards, J. Cornella, B. Vokits, S. A.
Shaw, P. S. Baran, Nickel-catalyzed cross-coupling of redox-active esters with
7. C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A.
Johnson, A. K. Chatterjee, M. Yan, P. S. Baran, Decarboxylative borylation.
Science 356, eaam7355 (2017). doi:10.1126/science.aam7355
8. D. Hu, L. Wang, P. Li, Decarboxylative borylation of aliphatic esters under visible-
1
1
1
1
2
9. L. Candish, M. Teders, F. Glorius, Transition-metal-free, visible-light-enabled
decarboxylative borylation of aryl N-hydroxyphthalimide esters. J. Am. Chem.
Soc. 139, 7440–7443 (2017). doi:10.1021/jacs.7b03127
2
3
0. R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, sp -sp diboranes:
Astounding structural variability and mild sources of nucleophilic boron for
51,
9594–9607
(2015).
REFERENCES AND NOTES
2
1. R. B. Bedford, P. B. Brenner, E. Carter, T. Gallagher, D. M. Murphy, D. R. Pye, Iron-
2. J. C. Walton, M. M. Brahmi, L. Fensterbank, E. Lacôte, M. Malacria, Q. Chu, S.-H.
Ueng, A. Solovyev, D. P. Curran, EPR studies of the generation, structure, and
1
2
3
4
. D. G. Hall, Ed., Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials (Wiley, 2011).
. N. Miyaura, in New Strategies in Metal-Catalyzed Cross-Coupling Reactions, A. de
Meijere, F. Diederich, Eds. (Wiley, 2004), chap. 2.
. C. Sandford, V. K. Aggarwal, Stereospecific functionalizations and transformations
2
2
4. D. Lu, C. Wu, P. Li, Synergistic effects of Lewis bases and substituents on the
2
5
2
5. J. Hioe, A. Karton, J. M. L. Martin, H. Zipse, Borane-lewis base complexes as
6. S.-H. Ueng, A. Solovyev, X. Yuan, S. J. Geib, L. Fensterbank, E. Lacôte, M.
Malacria, M. Newcomb, J. C. Walton, D. P. Curran, N-heterocyclic carbene boryl
6
2
7
. P. C. Trippier, C. McGuigan, Boronic acids in medicinal chemistry: Anticancer,
8
. L. Guo, M. Rueping, Functional group interconversion: Decarbonylative borylation
2
7. C. D. Martin, M. Soleilhavoup, G. Bertrand, Carbene-stabilized main group
8. G. Wang, H. Zhang, J. Zhao, W. Li, J. Cao, C. Zhu, S. Li, Homolytic cleavage of a B-
B bond by the cooperative catalysis of two Lewis bases: Computational design
0. P. Nguyen, C. Dai, N. J. Taylor, W. P. Power, T. M. Marder, N. L. Pickett, N. C.
Norman, Lewis base adducts of diboron compounds: Molecular structures of
(
9
. H. Ochiai, Y. Uetake, T. Niwa, T. Hosoya, Rhodium-catalyzed decarbonylative
borylation of aromatic thioesters for facile diversification of aromatic carboxylic
2
56,
2482–2486
(2017).
1
1
0. J. Hu, Y. Zhao, J. Liu, Y. Zhang, Z. Shi, Nickel-catalyzed decarbonylative
1. K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda, Photosensitized
decarboxylative Michael addition through N-(acyloxy)phthalimides via an
2
3
[
2
B (cat)
2 6
C
H ). Inorg. Chem.
4
3
3
1. F. J. Lawlor, N. C. Norman, N. L. Pickett, E. G. Robins, P. Nguyen, G. Lesley, T. B.
Marder, J. A. Ashmore, J. C. Green, Bis-catecholate, bis-dithiocatecholate, and
2. M. Oelgemöller, A. G. Griesbeck, Photoinduced electron transfer chemistry of
1
1
2. G. Pratsch, G. L. Lackner, L. E. Overman, Constructing quaternary carbons from
N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light
80,
6025–6036
(2015).
3
3. T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D. Maxwell,
M. D. Eastgate, P. S. Baran, A general alkyl-alkyl cross-coupling enabled by
3
3. G. Kachkovskyi, C. Faderl, O. Reiser, Visible light-mediated synthesis of
First release: 15 June 2017
(Page numbers not final at time of first release)
4