7
008 Inorganic Chemistry, Vol. 49, No. 15, 2010
Bassanetti et al.
þ
þ
Scheme 1. Ligand Synthesis
soft metal ions, such as Cu and Ag . The presence of the
dithioacetate group renders this ligand potentially N2S2
tetradentate because both sulfur atoms can be involved in
metal binding for this moiety. Furthermore, the bispyrazole
(
N ) and dithioacetate (S ) donor systems are linked by the
2 2
tetrahedral central carbon atom, which introduces divergent
binding sites at an angle of ∼109°. These features represent
the main reason for the formation of oligonuclear complexes
þ
þ
þ
with Li , Cu , and Ag . In addition, the presence of bulky
t-Bu groups on the pyrazole rings provides additional steric
and hydrophobic protection to the central core of these
homoleptic complexes.
particular, C-centered heteroscorpionate ligands have been
34
35-38
39-41
prepared that exhibit Cp, phenol/alcohol,
thioether,
42-44
or a carboxyl and thiocarboxyl
residues in addition to
Because the X-ray structures of [Li(L)] , [Ag(L)] , and
the N donor system. Furthermore, polytopic ligands desig-
3
3
2
[
Cu (L) ]BF indicate that L tends to support oligomers
ned to produce supramolecular architectures have also been
5 4 4
45-47
(through S-bridging), we wished to investigate the nuclearity
described.
of these species in solution. This study was performed by
In the present work, we have studied the coordination
properties of the C-centered heteroscorpionate ligand bis-
4
9-51
means of electrospray-mass (ESI-MS) spectrometry
52-54
combined with dilution, diffusion,
and variable tem-
(3,5-tertbutylpyrazol-1-yl)dithioacetate (L, Scheme 1). Homo-
1
perature H NMR experiments. The silver complex occurs in
solution as a trinuclear entity whereas the copper complex
exhibits a pentanuclear-tetranuclear equilibrium. According
to the X-ray characterization, the disposition of the ML units
in the oligonuclear structures provides a central cavity that
may host an additional metal ion. In the silver complex, the
shape of this cavity is suitable for a relatively small cation
favoring a trigonal planar geometry, whereas in the copper
complex, the tetrahedral central site is already occupied by a
logous ligands have been previously reported, and their
binding properties were assessed mainly with early transition
44,48
metals and in the presence of co-ligands.
Because the
chemistry of this class of scorpionateshas been littleexplored,
we wish to extend the investigation concerning the coordina-
tion capabilities of L with late transition metals, which are
likely to exploit the affinity of the dithioacetate groups for
(
27) Cammi, R.; Gennari, M.; Giannetto, M.; Lanfranchi, M.; Marchio,
L.; Mori, G.; Paiola, C.; Pellinghelli, M. A. Inorg. Chem. 2005, 44, 4333–
345.
28) Janiak, C.; Scharmann, T. G.; Albrecht, P.; Marlow, F.; Macdonald,
R. J. Am. Chem. Soc. 1996, 118, 6307–6308.
29) Chiou, S. J.; Ge, P. H.; Riordan, C. G.; Liable-Sands, L. M.;
Rheingold, A. L. Chem. Commun. 1999, 159–160.
30) Mutseneck, E. V.; Bieller, S.; Bolte, M.; Lerner, H. W.; Wagner, M.
Inorg. Chem. 2010, 49, 3540–3552.
31) Ge, P. H.; Haggerty, B. S.; Rheingold, A. L.; Riordan, C. G. J. Am.
Chem. Soc. 1994, 116, 8406–8407.
þ
0
þ
0
Cu ion. The possibility that mixed MM L (M = Cu , M =
þ
Ag ) complexesmay formwas further exploredwith ESI-MS
4
(
spectrometry.
(
Experimental Section
(
General Procedures. 3,5-Di-tert-butylpyrazole was obtained
from 2,2,6,6-tetramethyl-3,5-heptanedione and hydrazine hy-
(
55
drate using a reported literaturemethod. Bis(3,5-t-butylpyrazol-
1-yl)methane was prepared according to the general method
employed for the synthesis of bis(pyrazolyl)methanes via reac-
tion of azoles with CH Cl under phase transfer catalysis con-
(
(
(
32) Qin, Y.; Cui, C. Z.; Jakle, F. Macromolecules 2008, 41, 2972–2974.
33) Lu, C. C.; Peters, J. C. Inorg. Chem. 2006, 45, 8597–8607.
34) Otero, A.; Fernandez-Baeza, J.; Antinolo, A.; Tejeda, J.; Lara-
2
2
Sanchez, A.; Sanchez-Barba, L.; Rodriguez, A. M.; Maestro, M. A.
56,57
ditions.
3 4 4
[Cu(CH CN) ]BF was prepared as previously
J. Am. Chem. Soc. 2004, 126, 1330–1331.
5
8
described. All other reagents and solvents were commercially
available. Tetrahydrofuran (THF) and MeOH were distilled
over Na/benzophenone and CaH , respectively, and carbon
(
35) Hoffman, J. T.; Carrano, C. J. Inorg. Chim. Acta 2006, 359, 1248–
1
254.
36) Otero, A.; Fernandez-Baeza, J.; Antinolo, A.; Tejeda, J.; Lara-
Sanchez, A.; Sanchez-Barba, L.; Rodriguez, A. M. Eur. J. Inorg. Chem.
(
2
˚
disulfide was stored over 3 A molecular sieves before use. The
2
004, 260–266.
syntheses were performed under inert gas (N
techniques. Single crystals of the complexes were obtained in
a glovebox (N ). Infrared spectra were recorded from 4000
2
) using Schlenk
(
37) Higgs, T. C.; Carrano, C. J. Inorg. Chem. 1997, 36, 291–297.
(
38) Gennari, M.; Tegoni, M.; Lanfranchi, M.; Pellinghelli, M. A.;
Marchio, L. Inorg. Chem. 2007, 46, 3367–3377.
39) Zhang, J.; Braunstein, P.; Hor, T. S. A. Organometallics 2008, 27,
2
-1
(
to 700 cm on a Perkin-Elmer FT-IR Nexus spectrometer
equipped with a Smart Orbit HATR accessory (diamond
crystal). H NMR spectra were recorded on a Bruker Avance
4
277–4279.
(
40) Hammes, B. S.; Carrano, C. J. Chem. Commun. 2000, 1635–1636.
1
(
41) Gennari, M.; Tegoni, M.; Lanfranchi, M.; Pellinghelli, M. A.;
Giannetto, M.; Marchio, L. Inorg. Chem. 2008, 47, 2223–2232.
42) Otero, A.; Fernandez-Baeza, J.; Tejeda, J.; Antinolo, A.; Carrillo-
Hermosilla, F.; Diez-Barra, E.; Lara-Sanchez, A.; Fernandez-Lopez, M.;
(
(
49) Spasojevic, I.; Boukhalfa, H.; Stevens, R. D.; Crumbliss, A. L. Inorg.
Chem. 2001, 40, 49–58.
50) Algarra, A. G.; Basallote, M. G.; Fernandez-Trujillo, M. J.; Guillamon,
E.; Llusar, R.; Segarra, M. D.; Vicent, C. Inorg. Chem. 2007, 46, 7668–
677.
51) Collins, J. M.; Uppal, R.; Incarvito, C. D.; Valentine, A. M. Inorg.
Chem. 2005, 44, 3431–3440.
52) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Chem.
Soc. Rev. 2008, 37, 479–489.
53) Pregosin, P. S. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 261–
Lanfranchi, M.; Pellinghelli, M. A. J. Chem. Soc., Dalton Trans. 1999, 3537–
(
3
539.
(
43) Burzlaff, N.; Hegelmann, I.; Weibert, B. J. Organomet. Chem. 2001,
7
6
26, 16–23.
(
(
44) Otero, A.; Fernandez-Baeza, J.; Antinolo, A.; Carrillo-Hermosilla,
F.; Tejeda, J.; Lara-Sanchez, A.; Sanchez-Barba, L.; Fernandez-Lopez, M.;
(
Rodriguez, A. M.; Lopez-Solera, I. Inorg. Chem. 2002, 41, 5193–5202.
(
45) Reger, D. L.; Gardinier, J. R.; Semeniuc, R. F.; Smith, M. D.
(
J. Chem. Soc., Dalton Trans. 2003, 1712–1718.
46) Reger, D. L.; Sirianni, E.; Horger, J. J.; Smith, M. D.; Semeniuc,
R. F. Cryst. Growth Des. 2010, 10, 386–393.
47) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Eur. J. Inorg. Chem.
002, 543–546.
48) Pellei, M.; Alidori, S.; Camalli, M.; Campi, G.; Lobbia, G. G.;
Mancini, M.; Papini, G.; Spagna, R.; Santini, C. Inorg. Chim. Acta 2008, 361,
456–1462.
2
88.
(
(
54) Zuccaccia, D.; Macchioni, A. Organometallics 2005, 24, 3476–3486.
(55) Yang, G. A.; Raptis, R. G. Inorg. Chim. Acta 2003, 352, 98–104.
(56) Juli ꢁa , S.; Sala, P.; Del Mazo, J.; Sancho, M.; Ochoa, C.; Elguero, J.;
(
2
Fayet, J. P.; Vertut, M. C. J. Heterocyclic Chem. 1982, 19, 1141–1145.
(57) Beck, A.; Weibert, B.; Burzlaff, N. Eur. J. Inorg. Chem. 2001, 521–
527.
(
1
(58) Leftin, J. H. Chem. Abstr. 1967, 66, 46487e.