3
980
A. V. Kumar et al. / Tetrahedron Letters 52 (2011) 3978–3981
X
X
SeCN
SeH
Se
KSeCN
CuI, L4
H O
2
Cs CO
2 3
CuI, L4/Cs CO3
2
Scheme 2. A plausible mechanism for the CuI catalyzed C–Se cross-coupling of aryl halides with potassium selenocyanate.
played a major role in governing the reactivity of the substrate.
This protocol efficiently coupled iodo benzenes having electron
donating groups (eg. Me, Et and OMe) with potassium selenocya-
nate to produce the corresponding products in good yields (Table 2,
entries 2, 3, 4), whereas in the presence of electron withdrawing
group (NO2) a slight decrease in the yield of the diaryl selenides
Silveira, C. C.; Rocha, J. B. T.; Wessjohann, L. A. Tetrahedron Lett. 2002, 43, 7329;
e) Braga, A. L.; Paixao, M. W.; Marin, G. Synlett 2005, 1975.
(a) Sarma, B. K.; Mugesh, G. Org. Biomol. Chem. 2008, 6, 965; (b) Nogueira, C. W.;
Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255; (c) Mugesh, G.; du Mont, W.
W.; Sies, H. Chem. Rev. 2001, 101, 2125; (d) Mugesh, G.; Singh, H. B. Chem. Soc.
Rev. 2000, 29, 347.
(
3
.
.
4
Engman, L.; Cotgreave, I.; Angulo, M.; Taylor, C. W.; Paine-Murrieta, G. D.;
Powis, G. Anticancer Res. 1997, 17, 4599.
(
Table 2, entries 6 and 7) was observed. Interestingly, when 1,2-
5. (a) Back, T. G.; Moussa, Z. J. Am. Chem. Soc. 2003, 125, 13455; (b) Anderson, C.
M.; Allberg, A.; Hogberg, T. Adv. Drug. Res. 1996, 28, 65; (c) Clark, L. C.; Combs,
G. F.; Turnbull, B. W., Jr.; Slate, E. H.; Chalker, D. K.; Chow, J.; Davis, L. S.; Glover,
R. A.; Graham, G. F.; Gross, E. G.; Krongrad, A.; Lesher, J. L.; Park, H. K., Jr.;
Sanders, B. B.; Smith, C. L., Jr.; Taylor, J. R. J. Am. Med. Assoc. 1996, 276, 1957; (d)
Woods, J. A.; Hadfield, J. A.; McGown, A. T.; Fox, B. W. Org. Biomol. Chem. 1993,
diiodobenzene was reacted with potassium selenocyanate, the de-
sired product was obtained in moderate yield (Table 2, entry 11).
Utilizing these conditions, heterocyclic compounds, such as 3-
iodopyridine and 2-iodo/5-methyl-2- iodo thiophene also afforded
the corresponding products in high yields (Table 2, entries 12–16).
In order to evaluate the scope of the process, a variety of substi-
tuted aryl bromides and chlorides were tested under the same
reaction conditions (Table 3). In the case of aryl bromides, the reac-
tion with potassium selenocyanate furnished the corresponding
diaryl selenide derivatives in moderate yields (Table 3 entries 1,
1
, 333.
6.
(a) Suzuki, H.; Abe, H.; Osuka, A. Chem. Lett. 1981, 151; (b) Osuka, A.; Ohmasa,
N.; Suzuki, H. Synth. Commun. 1982, 857; (c) Andersson, C. M.; Hallberg, A.;
Linden, M.; Brattsand, R.; Moldeus, P.; Cotgreave, I. Free Radical Biol. Med. 1994,
1
6
6, 17; (d) Andersson, C. M.; Hallberg, A.; Hugberg, T. Adv. Drug. Res. 1996, 28,
5.
7. Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1, 1725.
8. Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol, H. Organometallics 1985, 4,
657.
3
–8) whereas in the case of aryl chlorides, trace amount of cou-
9.
(a) Bhadra, S.; Saha, A.; Ranu, B. C. J. Org. Chem. 2010, 75, 4864; (b) Singh, D.;
Alberto, E. E.; Rodrigues, O. E. D.; Braga, A. L. Green Chem. 2009, 11, 1521; (c)
Alves, D.; Santos, C. G.; Paixao, M. W.; Soares, L. C.; deSouza, D.; Rodrigues, O. E.
D.; Braga, A. L. Tetrahedron Lett. 2009, 50, 6635; (d) Saha, A.; Saha, D.; Ranu, B. C.
Org. Biomol. Chem. 2009, 7, 1652; (e) Taniguchi, N.; Onami, T. J. Org. Chem. 2004,
pling product was observed (Table 3, entry 2).
Further more, C–Se cross-coupling of heterocyclic bromides
such as 3-bromopyridine, 5-methyl-2-bromothiopene and 5-bro-
mopyrimidine gave moderate to good yields (Table 3, entries 5–
6
9, 915; (f) Kumar, S.; Engman, L. J. Org. Chem. 2006, 71, 5400; (g) Taniguchi, N.
8
). Iodo benzene was found to be the more reactive substrate than
J. Org. Chem. 2007, 72, 1241; (h) Gujadhur, R. K.; Venkataraman, D. Tetrahedron
Lett. 2003, 44, 81; (i) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii,
P. V. Tetrahedron Lett. 2003, 44, 7039; (j) Wang, L.; Wang, M.; Huang, F. Synlett
bromo and chloro benzenes.
A plausible mechanism for the CuI catalyzed C–Se cross-cou-
pling of aryl halides with potassium selenocyanate is shown in
Scheme 2. First, the aromatic halide is activated by the Cu(I) com-
plex, which further reacts with potassium selenocyanate leading to
the formation of aryl selenocyanate. Then, aryl selenocyanate is
hydrolyzed to generate benzeneselenol under the basic conditions.
Then the newly generated benzeneselenol intermediate reacts
with the aryl halide in the presence of copper catalyst to afford
the C–Se coupling product.18
In conclusion, we have developed an experimentally simple and
inexpensive copper iodide catalyzed C–Se cross coupling of aryl ha-
lides with potassium selenocyanate as a selenium surrogate in
water without inert atmosphere. Various aryl halides underwent
cross-coupling with potassium selenocyanate to give the corre-
sponding products in high yields.
2005, 2007; (k) Chang, D.; Bao, W. Synlett 2006, 1786; (l) Taniguchi, N.; Onami,
T. Synlett 2003, 829; (m) Taniguchi, N. Synlett 2005, 1687.
1
1
1
0. Wang, M.; Ren, K.; Wang, L. Adv. Synth. Catal. 2009, 351, 1586.
1. Ren, K.; Wang, M.; Wang, L. Org. Biomol. Chem. 2009, 7, 4858.
2. Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. Eur. J. Org. Chem.
2009, 5902.
3. Reddy, V. P.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2010, 75, 8720.
4. (a)Organic Synthesis in Water; Grieca, P. A., Ed.; Blackie A & P: London, 1998; (b)
Lindstrom, U. M. Chem. Rev. 2002, 102, 2751; (c) Kobayahi, S.; Manabe, K. Acc.
Chem. Res. 2002, 35, 209; (d) Li, C.-J. Chem.Rev. 2005, 105, 3095; (e) Blackmond,
D. G.; Armstrong, A.; Coomber, V.; Wells, A. Angew. Chem., Int. Ed. 2007, 46,
1
1
3
798.
5. (a) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189;
b) Swapna, K.; Kumar, A. V.; Reddy, V. P.; Rao, K. R. J. Org. Chem. 2009, 74,
7514; (c) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11,
1
1
1
(
9
1
51; (d) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11,
697; (e) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Synlett 2009, 2783;
(
f) Reddy, V. P.; Kumar, A. V.; Rao, K. R. Chem. Lett. 2010, 39, 212; (g) Reddy, V.
P.; Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2010, 51, 3181.
6. Copper-catalyzed Cross-coupling reactions in aqueous media, see: (a) Teo, Y.-
C.; Chua, G.-L. Chem. Eur. J. 2009, 15, 3072; Teo, Y.-C.; Yong, F.-F.; Poh, C.-Y.;
Yan, Y.-K.; Chua, G.-L. Chem. Commun. 2009, 6258; Peng, J.; Ye, M.; Zong, C.; Hu,
F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. J. Org. Chem. 2011, 76, 716; Wang, F.;
Fu, H.; Jiang, Y.; Zhao, Y. Green Chem. 2008, 10, 452; Wang, Y.; Wu, Z.; Wang, L.;
Li, Z.; Zhou, X. Chem. Eur. J. 2009, 15, 8971; Liang, L.; Li, Z.; Zhou, X. Org. Lett.
2009, 11, 3294; Li, X.; Yang, D.; Jiang, Y.; Fu, H. Green Chem. 2010, 12, 1097.
7. General procedure for the synthesis of diaryl selenides. Aryl halide (1.0 mmol), CuI
Acknowledgments
A.V.K. thanks UGC and V.P.R. thanks CSIR, New Delhi, for the
award of fellowship.
(
(
10 mol %), L4 (10 mol %), Cs
1.2 mmol) were charged in a 10 ml round bottom flask with a condenser
2 3
CO (2.0 equiv) and potassium selenocyanate
Supplementary data
under air, followed by the addition of water (3.0 mL). The reaction mixture was
heated in an oil bath at 100 °C and stirred at this temperature for 24 h. The
progress of the reaction was monitored by TLC. After the reaction was
complete, the reaction mixture was allowed to cool, and treated with ethyl
2 4
acetate. The combined organic extracts were dried with anhydrous Na SO .
The solvent and volatiles were completely removed under vacuum to give the
crude product, which was purified by column chromatography on silica gel
References and notes
(
petroleum ether/ethyl acetate, 9:1) to afford the corresponding coupling
1 13
1
.
.
Krief, A.; Hevesi, L. Organoselenium Chemistry I; Springer: Berlin, 1988; (b)
Comasseto, J. V.; Ling, L. W.; Petragnani, N.; Stefani, H. A. Synthesis 1997, 373;
product in excellent yields. All the products were characterized by H and
NMR, MS and compared with the literature values.
C
(
c)Organoselenium Chemistry A Practical Approach; Back, T. G., Ed.; Oxford
University Press: Oxford, UK, 1999; (d) Procter, D. J. J. Chem. Soc., Perkin Trans. 1
000, 835.
Data of representative examples. Bis(4-ethylphenyl)selane (Table 2, entry 3). Light
À1
yellow oil; IR (neat):
m
3057, 2930, 2836, 1559, 1461, 1061, 937, 846, 735 cm
H NMR (200 MHz, CDCl
J = 8.12 Hz), 2.59 (q, 4H, J = 7.54 Hz), 1.22 (t, 6H, J = 7.54 Hz); C NMR (50 MHz,
CDCl , TMS): d = 133.0, 132.9, 128.8, 127.9, 28.4, 15.4; Mass (ESI): m/z 290
;
1
2
3
, TMS): d = 7.34 (d, 4H, J = 8.12 Hz), 7.06 (d, 4H,
13
2
(a) Braga, A. L.; Ludtke, D. S.; Vargas, F.; Braga, R. C. Synlett 2006, 1453; (b)
Braga, A. L.; Vargas, F.; Sehnem, J. A.; Braga, R. C. J. Org. Chem. 2005, 70, 9021; (c)
Braga, A. L.; Paixao, M. W.; Ludtke, D. S.; Silveira, C. C.; Rodrigues, O. E. D. Org.
Lett. 2003, 5, 3635; (d) Braga, A. L.; Silva, S. J. N.; Ludtke, D. S.; Drekener, R. L.;
3
[M+1]; Anal. Calcd for C16
6.19.
H18Se (289): C, 66.43; H, 6.27. Found: C, 66.37; H,