10.1002/cphc.201800447
ChemPhysChem
ARTICLE
taken with RSC (1 mg) in 5 ml SMF separately. Each samples were
sonicated and emission spectra was measured using fluorescence
spectrometer by exciting at the excitation wavelength of corresponding
pesticide. For GP titration study, 1 mg of RSC was taken in a cuvette and
GP was varied from 0 - 2 µM concentration. The whole study was carried
out in double distilled ultrapure water (pH=6.8) and room temperature.
[13] J. Sanchís, L. Kantiani, M. Llorca, F. Rubio, A. Ginebreda, J. Fraile, T.
Garrido, M. Farré, Anal. Bioanal. Chem. 2012, 402, 2335-2345.
[14] a) W. Xuan, Y. Cao, J. Zhou, W. Wang, Chem. Commun. 2013, 49,
10474-10476; b) T. J. Dale, J. Rebek, J. Am. Chem. Soc. 2006, 128,
4500-4501; c) Y. Hu, L. Chen, H. Jung, Y. Zeng, S. Lee, K. M. K. Swamy,
X. Zhou, M. H. Kim, J. Yoon, ACS Appl. Mater. Interfaces 2016, 8, 22246-
22252.
[15] a) A. Balamurugan, H.-i. Lee, Macromolecules 2016, 49, 2568-2574; b) J.
Zheng, H. Zhang, J. Qu, Q. Zhu, X. Chen, Anal. Methods 2013, 5, 917-
924.
Real Sample Analysis
To find the potential applicability of the proposed RSA in real
samples, detection of GP residues was carried out in ground water and
rice grains. From the literature, these are the suitable samples for
pesticide detection in real samples.[29b] The collected ground water
sample was filtered using filter paper to remove solid particulates from
the samples. Then the water samples were spiked with different
concentrations of GP (1 × 10-4 M and 2 × 10-4 M) and analyzed by RSC.
The spiked rice sample was prepared according to a previous report.[29a]
Similarly, different concentrations of GP (1 × 10-4 M and 2 × 10-4 M) were
added into the fine powdered rice samples (10.0 g) and kept for 24 h at
room temperature. Then, GP was extracted using 20 mL of methanol in
an ultrasonic bath for 20 min. The extracts were decanted and repeated
the same procedure twice. The extract was filtrated through filter paper
and then the concentration of GP was estimated using RSC as a probe.
[16] a) E. A. Songa, O. A. Arotiba, J. H. O. Owino, N. Jahed, P. G. L. Baker, E.
I. Iwuoha, Bioelectrochemistry 2009, 75, 117-123; b) B. S. Clegg, G. R.
Stephenson, J. C. Hall, J. Agric. Food Chem. 1999, 47, 5031-5037.
[17] X. Ding, K.-L. Yang, Anal. Chem. 2013, 85, 5727-5733.
[18] D. Wang, B. Lin, Y. Cao, M. Guo, Y. Yu, J. Agric. Food Chem. 2016, 64,
6042-6050.
[19]a) Y. Liu, M. Bonizzoni, J. Am. Chem. Soc. 2014, 136, 14223-14229; b) M.
Wang, H. Ye, L. You, X. Chen, ACS Appl. Mater. Interfaces 2016, 8, 574-
581.
[20] a) X. Wu, Y. Song, X. Yan, C. Zhu, Y. Ma, D. Du, Y. Lin, Biosens.
Bioelectron. 2017, 94, 292-297; b) F. Du, Y. Min, F. Zeng, C. Yu, S. Wu,
Small 2014, 10, 964-972.
[21] E. Babu, P. M. Mareeswaran, S. Rajagopal, J. Fluoresc. 2013, 23, 137-
146.
[22] a) X. Zhou, S. Han, Q. Zhang, Y. Dou, J. Guo, L. Che, X. Li, J. Zhang,
Polym. Chem. 2015, 6, 3716-3727; b) B. M. Ashwin, A. Herculin Arun
Baby, M. Prakash, M. Hochlaf, P. Muthu Mareeswaran, J. Phys. Org.
Chem. 2018, 31, e3788.
Acknowledgements
[23] a) P. M. Mareeswaran, D. Maheshwaran, E. Babu, S. Rajagopal, J.
Fluoresc. 2012, 22, 1345-1356; b) G. Nie, Y. Sun, F. Zhang, M. Song, D.
Tian, L. Jiang, H. Li, Chem. Sci. 2015, 6, 5859-5865; c) B. M. Ashwin, A.
Vinothini, T. Stalin, P. Muthu Mareeswaran, ChemistrySelect 2017, 2,
931-936.
The authors acknowledge the financial support of Department of
Science and Technology (DST INSPIRE) [Project number –
IFA14/CH-147], India. B. M. Ashwin thanks to Alagappa
University for providing AURF Fellowship for his research work.
[24] a) T. Hanauer, R. J. Hopkinson, K. Patel, Y. Li, D. Correddu, A.
Kawamura, V. Sarojini, I. K. H. Leung, T. Gruber, Org. Biomol. Chem.
2017, 15, 1100-1105; b) X. Chi, G. M. Peters, F. Hammel, C. Brockman, J.
L. Sessler, J. Am. Chem. Soc. 2017, 139, 9124-9127; c) B. M. Ashwin, C.
Saravanan, M. Senthilkumaran, R. Sumathi, P. Suresh, P. Muthu
Mareeswaran, Supramol. Chem. 2018, 30, 32-41.
Keywords : FRET-On Sensor• Glyphosate• Pesticide Detection•
Calixarene• Luminescent Nanoparticle
[1] X. Zeng, J. Ma, L. Luo, L. Yang, X. Cao, D. Tian, H. Li, Org. Lett. 2015, 17,
2976-2979.
[25] a) F. Zou, B. Wu, X. Wang, Y. Chen, K. Koh, K. Wang, H. Chen, Sensors
Actuat. B: Chem 2017, 241, 160-167; b) P. G. Sutariya, A. Pandya, A.
Lodha, S. K. Menon, Talanta 2016, 147, 590-597.
[2] a) F. Zhang, Y. Sun, D. Tian, W. S. Shin, J. S. Kim, H. Li, Chem. Commun.
2016, 52, 12685-12693; b) T. Wang, R. C. Reid, S. D. Minteer,
Electroanal. 2016, 28, 854-859.
[26] X.-Z. Xiao, Y.-Q. Feng, S.-L. Da, Y. Zhang, Anal. Lett. 2000, 33, 3355-
3372.
[3] M. J. Tan, Z.-Y. Hong, M.-H. Chang, C.-C. Liu, H.-F. Cheng, X. J. Loh, C.-
H. Chen, C.-D. Liao, K. V. Kong, Biosens. Bioelectron. 2017, 96, 167-172.
[4] a) K. Mahendrakar, P. M. Venkategowda, S. M. Rao, D. P. Mutkule,
Indian J. Crit. Care Med. 2014, 18, 328-330; b) J. M. Green, Pest Manag.
Sci. 2014, 70, 1351-1357.
[27] T. Li, Y. Zhou, J. Sun, D. Tang, S. Guo, X. Ding, Microchim. Acta 2011,
175, 113.
[28] L. Olejko, I. Bald, RSC Adv. 2017, 7, 23924-23934.
[29]a) J. V. Rohit, R. K. Singhal, S. K. Kailasa, Sensors Actuat. B: Chem 2016,
237, 1044-1055; b) N. Fahimi-Kashani, M. R. Hormozi-Nezhad, Anal.
Chem. 2016, 88, 8099-8106.
[5] a) P. I. Ingaramo, J. Varayoud, M. M. Milesi, M. Guerrero Schimpf, R.
Alarcón, M. Muñoz-de-Toro, E. H. Luque, Reproductive Toxicol. 2017, 73,
87-95; b) C. M. Howe, M. Berrill, B. D. Pauli, C. C. Helbing, K. Werry, N.
Veldhoen, Environ. Toxicol. Chem. 2004, 23, 1928-1938.
[30] a) X. Huang, Z. P. Aguilar, H. Li, W. Lai, H. Wei, H. Xu, Y. Xiong, Anal.
Chem. 2013, 85, 5120-5128; b) C.-C. Fang, C.-C. Chou, Y.-Q. Yang, T.
Wei-Kai, Y.-T. Wang, Y.-H. Chan, Anal. Chem. 2018, 90, 2134-2140.
[31] S. J. Dalgarno, J. L. Atwood, C. L. Raston, Cryst. Growth Des. 2006, 6,
174-180.
[6] S. Thongprakaisang, A. Thiantanawat, N. Rangkadilok, T. Suriyo, J.
Satayavivad, Food Chem. Toxicol. 2013, 59, 129-136.
[7] H. C. Steinrücken, N. Amrhein, Biochem. Biophys. Res. Commun. 1980,
94, 1207-1212.
[32] H. Li, F. Qu, Chem. Mater. 2007, 19, 4148-4154.
[8] J. M. Green, M. D. K. Owen, J. Agric. Food Chem. 2011, 59, 5819-5829.
[9] J. F. Acquavella, B. H. Alexander, J. S. Mandel, C. Gustin, B. Baker, P.
Chapman, M. Bleeke, Environ. Health Perspect. 2004, 112, 321-326.
[10]T. Minami, Y. Liu, A. Akdeniz, P. Koutnik, N. A. Esipenko, R. Nishiyabu, Y.
Kubo, P. Anzenbacher, J. Am. Chem. Soc. 2014, 136, 11396-11401.
[11] T. Saito, H. Aoki, A. Namera, H. Oikawa, S. Miyazaki, A. Nakamoto, S.
Inokuchi, Anal. Sci. 2011, 27, 999-999.
[33] a) A. Acharya, B. Ramanujam, J. P. Chinta, C. P. Rao, J. Phys. Chem.
2011, 76, 127-137; b) M. Tabakci, B. Tabakci, M. Yilmaz, J. Incl. Phenom.
Macrocycl. Chem. 2005, 53, 51-56; c) P. Muthu Mareeswaran, E. Babu, S.
Rajagopal, J. Fluoresc. 2013, 23, 997-1006.
[34] T. Li, Y. Zhou, J. Sun, K. Wu, Am. J. Analyt. Chem. 2012, 3, 7.
[35] B. M. Ashwin, G. Sivaraman, T. Stalin, R. Yuvakkumar, P. M.
Mareeswaran, J. Photochem. Photobiol. B 2018, 183, 302–308.
[36] G. Xue, Z. Yue, Z. Bing, T. Yiwei, L. Xiuying, L. Jianrong, Analyst 2016,
141, 4941-4946.
[12] a) H. A. Martins-Junior, D. T. Lebre, A. Y. Wang, M. A. Pires, O. V.
Bustillos, Rapid Commun. Mass Spectrom. 2009, 23, 1029-1034; b) A.
Ghanem, P. Bados, L. Kerhoas, J. Dubroca, J. Einhorn, Anal. Chem.
2007, 79, 3794-3801.
[37] H. Wei, J. Liu, L. Zhou, J. Li, X. Jiang, J. Kang, X. Yang, S. Dong, E.
Wang, Chem. Eur. J. 2008, 14, 3687-3693.
This article is protected by copyright. All rights reserved.