10.1002/anie.201709186
Angewandte Chemie International Edition
COMMUNICATION
[4]
[5]
a) A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A.
Fischer, Chem. Soc. Rev. 2014, 43, 6062-6096; b) Z. Chang, D. H. Yang,
J. Xu, T. L. Hu, X. H. Bu, Adv. Mater. 2015, 27, 5432-5441.
In addition, PCN-606-OMe-Br and PCN-700-Br were also used
for bromination of biphenols and anilines under ambient
conditions. As shown in Table S2, the bromination yields of 4,4’-
biphenol and p-anisidine are much higher than would be obtained
using liquid bromine, indicating that these bromine pre-absorbed
FMOFs can be used as generic bromine sources for bromination
reactions.[17]
a) I. Grobler, V. J. Smith, P. M. Bhatt, S. A. Herbert, L. J. Barbour, J. Am.
Chem. Soc. 2013, 135, 6411-6414; b) S. Yang, L. Liu, J. Sun, K. M.
Thomas, A. J. Davies, M. W. George, A. J. Blake, A. H. Hill, A. N. Fitch,
C. C. Tang, M. Schroder, J. Am. Chem. Soc. 2013, 135, 4954-4957; c)
H. L. Zhou, Y. B. Zhang, J. P. Zhang, X. M. Chen, Nat. Commun. 2015,
6, 6917; d) S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D.
M. Tobbens, S. Zander, R. S. Pillai, G. Maurin, F. X. Coudert, S. Kaskel,
Nature 2016, 532, 348-352; e) J. Pang, C. Liu, Y. Huang, M. Wu, F. Jiang,
D. Yuan, F. Hu, K. Su, G. Liu, M. Hong, Angew. Chem. Int. Ed.2016, 55,
7478-7482.
In conclusion, a series of FMOFs have been synthesized on the
basis of linear or tetratopic organic ligands and 8-connected Zr6
clusters. Taking advantage of the flexible frameworks, these
materials show higher bromine adsorption capacities than the
rigid MOF. Additionally, the bromine pre-adsorbed FMOFs can be
utilized as bromine sources under ambient conditions, and the
efficiency of the bromination reaction for organic starting
molecules can be significantly improved.
The flexible and chemically stable Zr-MOFs developed in this
work shall provide versatile platforms for the study of fundamental
science and applications in gas storage, separation, drug delivery
and catalysis.
[6]
[7]
M. K. Taylor, T. Runcevski, J. Oktawiec, M. I. Gonzalez, R. L. Siegelman,
J. A. Mason, J. Ye, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2016,
138, 15019-15026.
a) S. Yuan, W. Lu, Y. P. Chen, Q. Zhang, T. F. Liu, D. Feng, X. Wang, J.
Qin, H. C. Zhou, J. Am. Chem. Soc. 2015, 137, 3177-3180; b) S. Yuan,
Y. P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T. F. Liu, X.
Lian, H. C. Zhou, Angew. Chem. Int. Ed. 2015, 54, 14696-14700; c) C.
X. Chen, Z. Wei, J. J. Jiang, Y. Z. Fan, S. P. Zheng, C. C. Cao, Y. H. Li,
D. Fenske, C. Y. Su, Angew. Chem. Int. Ed. 2016, 55, 9932-9936; d) S.
Yuan, Y. P. Chen, J. S. Qin, W. Lu, L. Zou, Q. Zhang, X. Wang, X. Sun,
H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 8912-8919; e) S. Yuan, L.
Zou, H. Li, Y. P. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall, H. C. Zhou,
Angew. Chem. Int. Ed. 2016, 55, 10776-10780.
Acknowledgements
[8]
[9]
a) J. T. Hughes, D. F. Sava, T. M. Nenoff, A. Navrotsky, J. Am. Chem.
Soc. 2013, 135, 16256-16259; b) H. Kitagawa, H. Ohtsu, M. Kawano,
Angew. Chem. Int. Ed. 2013, 52, 12395-12399; c) K. S. Subrahmanyam,
C. D. Malliakas, D. Sarma, G. S. Armatas, J. Wu, M. G. Kanatzidis, J.
Am. Chem. Soc. 2015, 137, 13943-13948; d) Z. Yan, Y. Yuan, Y. Tian,
D. Zhang, G. Zhu, Angew. Chem. Int. Ed. 2015, 54, 12733-12737.
Y. Tulchinsky, C. H. Hendon, K. A. Lomachenko, E. Borfecchia, B. C.
Melot, M. R. Hudson, J. D. Tarver, M. D. Korzynski, A. W. Stubbs, J. J.
Kagan, C. Lamberti, C. M. Brown, M. Dinca, J. Am. Chem. Soc. 2017,
139, 5992-5997.
This work was financially supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences
(XDB20000000). The gas sorption studies were supported by the
Center for Gas Separations Relevant to Clean Energy
Technologies, an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences (DE-SC0001015). Structural analyses were
supported by the Robert A. Welch Foundation through a Welch
Endowed Chair to HJZ (A-0030). The National Science
Foundation Graduate Research Fellowship (DGE: 1252521) are
gratefully acknowledged. The authors also acknowledge the
financial supports of U.S. Department of Energy Office of Fossil
Energy, National Energy Technology Laboratory (DE-
FE0026472) and National Science Foundation Small Bussiness
Innovation Research (NSF-SBIR) under Grant No. (1632486).
The authors also acknowledge the financial supports of 973
Program (2014CB932101 and 2013CB933200), National Nature
Science Foundation of China (21390392 and 21731006), CAS
[10] J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J.
E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown,
P. L. Llewellyn, N. Masciocchi, J. R. Long, Nature 2015, 527, 357-361.
[11] P. Deria, D. A. Gomez-Gualdron, I. Hod, R. Q. Snurr, J. T. Hupp, O. K.
Farha, J. Am. Chem. Soc. 2016, 138, 14449-14457.
[12] M. Witman, S. Ling, S. Jawahery, P. G. Boyd, M. Haranczyk, B. Slater,
B. Smit, J. Am. Chem. Soc. 2017, 139, 5547-5557.
[13] J. L. Ma, L. D. Tran, A. J. Matzger, Cryst. Growth Des. 2016, 16, 4148-
4153.
[14] M. Zhang, Y. P. Chen, M. Bosch, T. Gentle, 3rd, K. Wang, D. Feng, Z. U.
Wang, H. C. Zhou, Angew. Chem. Int. Ed. 2014, 53, 815-818.
[15] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des.
2014, 14, 3576-3586.
(QYZDY-SSW-SLH025),
Youth
Innovation
Promotion
Association CAS, and Chun Miao Project of Haixi Institutes
(CMZX-2016-001). S. Yuan also acknowledges the Dow
Chemical Graduate Fellowship.
[16] J. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan, M. Hong, Nat.
Commun. 2015, 6, 7575.
[17] T. Osako, Y. Uozumi, Org. Lett. 2014, 16, 5866-5869.
Keywords: metal-organic frameworks • flexible • structural
transformation • bromine-nanocontainers • bromination reactions
[1]
a) B. Li, H.-M. Wen, W. Zhou, Jeff Q. Xu, B. Chen, Chem 2016, 1, 557-
580; b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724-
781; c) N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T.
Hupp, O. K. Farha, R. Q. Snurr, Chem. Soc. Rev. 2017; d) X. Lian, Y.
Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. C.
Zhou, Chem. Soc. Rev. 2017; e) L. B. Sun, X. Q. Liu, H. C. Zhou, Chem.
Soc. Rev. 2015, 44, 5092-5147; f) J. Jiang, Y. Zhao, O. M. Yaghi, J. Am.
Chem. Soc. 2016, 138, 3255-3265.
[2]
[3]
E. J. Carrington, C. A. McAnally, A. J. Fletcher, S. P. Thompson, M.
Warren, L. Brammer, Nat. Chem. 2017, 9, 882-889.
S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695-704.
This article is protected by copyright. All rights reserved.