M. Ito et al. / Tetrahedron Letters 44 (2003) 7521–7523
7523
References
1
2
3
. (a) Ito, M.; Hirakawa, M.; Murata, K.; Ikariya, T.
Organometallics 2001, 20, 379–381; (b) Ito, M.; Hirakawa,
M.; Osaku, A.; Ikariya, T. Organometallics, in press.
. For a review on racemization, see: Ebbers, E. J.; Ariaans,
G. J. A.; Houbiers, J. P. M.; Bruggink, A.; Zwanenburg, B.
Tetrahedron 1997, 53, 9417–9476.
. (a) Gen e´ t, J.-P.; Ratovelomanana-Vidal, V.; Pinel, C. Synlett
1993, 478–480; (b) Larsson, A. E.; Persson, B. A.; B a¨ ckvall,
J.-E. Angew. Chem., Int. Ed. Engl. 1997, 36, 1211–1212; (c)
Koh, J. H.; Jeong, H. M.; Park, J. Tetrahedron Lett. 1998,
39, 5545–5548; (d) Lee, D.; Huh, E. A.; Kim, M.-J.; Jung,
H. M.; Koh, J. H.; Park, J. Org. Lett. 2000, 2, 2377–2379;
Scheme 3.
(
e) Laxmi, Y. R. S.; B a¨ ckvall, J. E. Chem. Commun. 2000,
6
7
11–612; (f) P a` mies, O.; B a¨ ckvall, J. E. Chem. Eur. J. 2001,
, 5052–5058.
In the absence of any hydrogen acceptor except for the
ketone derived from the starting alcohol, the
intramolecular hydrogen transfer is manifested in the
reactions with non-racemic sec-alcohols or deuterated
7
4
. A typical experimental procedure: A degassed solution of
(
R)-2a (452 mg, 3.7 mmol) in anhydrous toluene (37 mL)
was transferred to a mixture of Cp*RuCl(cod) (14.1 mg,
0
0
at 30°C. The progress of the racemization was monitored
with an aliquot by HPLC or GLC analyses (see supplemen-
tary material).
.037 mmol), 1b (8.5 mg, 0.037 mmol) and KOt-Bu (4.2 mg,
.037 mmol) and the reaction mixture was vigorously stirred
2
-propanol employed as the substrates. We believe that
mixing Cp*RuCl(cod), 1b, and KOt-Bu may generate
Cp*Ru(amido) complex (3) in situ and the interconver-
sion between 3 and Cp*RuH(amine) complex (4)
should be responsible for this rapid racemization via
1b
5,6
5. For reviews on NH/metal bifunctional catalysis, see: (a)
Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102;
the hydrogen transfer illustrated in Scheme 3. In fact,
the catalyst system could promote transfer hydrogena-
tion with a reasonably high activity. Most probably, the
labile stereochemistry at the seemingly stereogenic Ru
center of 4 may lead to the high reaction rate in this
racemization.
(
b) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem.
2001, 66, 7931–7944.
6
. For example, see: (a) Hashiguchi, S.; Fujii, A.; Takehara,
J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117,
7
562–7563; (b) Haack, K.-J.; Hashiguchi, S.; Fujii, A.;
Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997,
6, 285–288.
In conclusion, we have found that Cp*RuCl(cod)/1b/
KOt-Bu catalyst system effects extremely rapid racem-
ization of chiral non-racemic sec-alcohols. In view of
recent advances in dynamic kinetic resolution (DKR) of
rac-secondary alcohols in which the transition metal-
catalyzed racemization is coupled with enzymatic trans-
3
7
. The ternary system of Cp*RuCl(cod)/1b/KOt-Bu was used
here as a catalyst for experimental convenience, although the
1
b
preformed complex Cp*RuCl(1b), which is obtainable
from Cp*RuCl(isoprene) and 1a, epimerized sec-alcohols in
toluene containing KOt-Bu at a comparable rate in compari-
son to the ternary system.
. For instance, the ee of optically pure (R)-2a only dropped
to 53% after 1 h and 25% ee after 2 h, respectively, in
3
b,d,9
formation of alcohols,
our racemization catalyst
may also contribute to the DKR since it exhibits high
catalyst performance under conditions favorable for the
enzymatic reactions. Further studies on the DKR using
our catalyst system are in progress.
8
2-propanol (0.1 M) under otherwise identical conditions.
9
. (a) Persson, B. A.; Larsson, A. E.; Ray, M. L.; B a¨ ckvall,
J.-E. J. Am. Chem. Soc. 1999, 121, 1645–1650; (b) Koh, J.
H.; Jung, H. M.; Kim, M.-J.; Park, J. Tetrahedron Lett. 1999,
Supplementary material
4
0, 6281–6284; (c) Persson, B. A.; Huerta, F. F.; B a¨ ckvall,
Experimental procedure for the racemization, HPLC or
GLC behavior, and details for isotope-labeling
experiments.
J. E. J. Org. Chem. 1999, 64, 5237–5249; (d) Jung, H. M.;
Koh, J. H.; Kim, M.-J.; Park, J. Org. Lett. 2000, 2, 409–411;
(
e) Huerta, F. F.; Laxmi, Y. R. S.; B a¨ ckvall, J. E. Org. Lett.
2000, 2, 1037–1040; (f) Jung, H. M.; Koh, J. H.; Kim, M.-J.;
Park, J. Org. Lett. 2000, 2, 2487–2490; (g) Huerta, F. F.;
B a¨ ckvall, J. E. Org. Lett. 2001, 3, 1209–1212; (h) P a` mies,
O.; B a¨ ckvall, J. E. J. Org. Chem. 2001, 66, 4022–4025; (i)
P a` mies, O.; B a¨ ckvall, J. E. Adv. Synth. Catal. 2001, 343,
726–731; (j) Kim, M.-J.; Choi, Y. K.; Choi, M. Y.; Kim, M.
J.; Park, J. J. Org. Chem. 2001, 66, 4736–4738; (k) Dijksman,
A.; Elzinga, J. M.; Li, Y.-X.; Arends, I. W. C. E.; Sheldon,
R. A. Tetrahedron: Asymmetry 2002, 13, 879–884; (l) Choi,
J. H.; Kim, Y. H.; Nam, S. H.; Shin, S. T.; Kim, M.-J.; Park,
J. Angew. Chem., Int. Ed. 2002, 41, 2373–2376.
Acknowledgements
We appreciate financial support from the Ministry of
Education, Culture, Sports, Science and Technology,
Japan (No. 12305057 and 14078209 ‘Reaction Control
of Dynamic Complexes’) and from Taisho Pharmaceu-
tical Co. Ltd (M.I.). This work is partly supported by
The 21 Century COE Program.