Journal of the American Chemical Society
Page 4 of 5
I.; Akiyama, N.; Tsutsumi, K.; Nishiyama, Y.; Kakiuchi, K. Highly
In summary, the substitution pattern of the oxazaboroli-
dine was found to have a strong influence on the outcome of
the enantioselective intermolecular [2+2] photocycloaddition
of enones which was mediated by an oxazaborolidine-AlBr3
complex. Catalyst 3d evolved as the catalyst of choice ena-
bling high enantioface differentation (82%-96% ee) and good
chemoselectivity. Studies are ongoing to reveal its mode of
action and to detect potential reaction intermediates.
Tetrahedron 2013, 69, 782-790. For additional references, see ref.19.
(9) (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014,
344, 392-396. (b) Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2014,
53, 7661-7664. (c) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.;
Yoon, T. P. Science 2016, 354, 1391-1395. (d) Tröster, A.; Alonso, R.;
Bauer, A.; Bach, T. J. Am. Chem. Soc. 2016, 138, 7808-7811. (e) Huang,
X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest, O.;
Meggers, E. J. Am. Chem. Soc. 2017, 139, 9120-9123. (f) Miller, Z. D.;
Lee, B. J.; Yoon, T. P. Angew. Chem. Int. Ed. 2017, 56, 11891-11895.
(10) (a) Brimioulle, R.; Bach, T. Science 2013, 342, 840-843. (b)
Brimioulle, R.; Bauer, A.; Bach, T. J. Am. Chem. Soc. 2015, 137, 5170-
5176.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
9
Supporting Information
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) For pioneering work on Lewis acid catalysis in [2+2] photocy-
cloaddition reactions, see: (a) Lewis, F. D.; Howard, D. K.; Oxman, J.
D. J. Am. Chem. Soc. 1983, 105, 3344-3345. (b) Lewis, F. D.; Barancyk,
S. V. J. Am. Chem. Soc. 1989, 111, 8653-8661.
(12) Review: Corey, E. J. Angew. Chem. Int. Ed. 2009, 48, 2100-2117.
(13) (a) Guo, H.; Herdtweck, E.; Bach, T. Angew. Chem. Int. Ed.
2010, 49, 7782-7785. (b) Brimioulle, R.; Bach, T. Angew. Chem. Int.
Ed. 2014, 53, 12921-12924.
The Supporting Information is available free of charge on the
Experimental procedures, analytical data and NMR spectra
for all new compounds, GLC traces of products.
AUTHOR INFORMATION
Corresponding Author
Notes
(14) More than 50 different chiral oxazaborolidines were prepared
and tested in combination with different Lewis acids.
(15) (a) Liu, D.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128,
8160-8161. (b) Shen, R.; Corey, E. J. Org. Lett. 2007, 9, 1057-1059.
(16) Other olefins (4,4-dimethylpentene, cyclopentene) reacted
also with high ee but the reactions suffered from lower selectivity.
(17) Examples: (a) Takeda, K.; Shimono, Y.; Yoshii, E. J. Am. Chem.
Soc. 1983, 105, 563-568. (b) El-Hachach, N.; Fischbach, M.; Gerke, R.;
Fitjer, L. Tetrahedron 1999, 55, 6119-6128. (c) Ishii, S.; Zhao, S.; Mehta,
G.; Knors, C. J.; Helquist, P. J. Org. Chem. 2001, 66, 3449-3458.
(18) For a review on previous photochemical approaches to gran-
disol, see ref.3c.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support by the European Research Council under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 665951 − ELICOS) is grate-
fully acknowledged. We thank O. Ackermann and J. Kuder-
mann for their help with the HPLC and GLC analyses.
(19) Syntheses of (+)- and (−)-grandisol (excluding formal total
syntheses): (a) Hobbs, P. D.; Magnus, P. D. J. Am. Chem. Soc. 1976,
98, 4594-4600. (b) Mori, K. Tetrahedron 1978, 34, 915-920. (c) Jones,
J. B.; Finch, M. A. W.; Jakovac, I. J. Can. J. Chem. 1982, 60, 2007-2011.
(d) Meyers, A. I.; Fleming, S. A. J. Am. Chem. Soc. 1986, 108, 306-307.
(e) Demuth, M.; Palomer, A.; Sluma, H.-D.; Dey, A. K.; Krüger, C.;
Tsay, Y.-H. Angew. Chem. Int. Ed. 1986, 25, 1117-1119. (f) Silverstein, R.
M.; Webster, F. X. J. Org. Chem. 1986, 51, 5226-5231. (g) Mori, K.;
Miyake, M. Tetrahedron 1987, 43, 2229-2239. (h) Mori, K.; Nagano, E.
Liebigs Ann. Chem. 1991, 341-344. (i) Hoffmann, N.; Scharf, H.-D.
Liebigs Ann. Chem. 1991, 1273-1277. (j) Mori, K.; Fukamatsu, K. Liebigs
Ann. Chem. 1992, 489-493. (k) Alibés, R.; Bourdelande, J. L.; Font, J.
Tetrahedron Lett. 1993, 34, 7455-7458. (l) Martín, T.; Rodríguez, C.
M.; Martín, V. S. Tetrahedron: Asymmetry 1995, 6, 1151-1164. (m)
Langer, K.; Mattay, J. J. Org. Chem. 1995, 60, 7256-7266. (n) Alibés,
R.; Bourdelande, J. L.; Font, J.; Parella, T. Tetrahedron 1996, 52, 1279-
1292. (o) Monteiro, H. J.; Zukerman-Schpector, J. Tetrahedron 1996,
52, 3879-3888. (p) Hamon, D. P. G.; Tuck, K. L. Tetrahedron Lett.
1999, 40, 7569-7572. (q) de March, P.; Figueredo, M.; Font, J.; Raya, J.
Org. Lett. 2000, 2, 163-165. (r) Hamon, D. P. G., Tuck, K. L. J. Org.
Chem. 2000, 65, 7839-7846. (s) de March, P.; Figueredo, M.; Font, J.;
Raya, J.; Alvarez-Larena, A.; Piniella, J. F. J. Org. Chem. 2003, 68,
2437-2447.
(20) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566-14569.
(21) For theoretical studies on enantioselective Lewis acid-cata-
lyzed [2+2] photocycloaddition reactions supporting the intermedia-
cy of a triplet excited state, see: (a) Wang, H.; Cao, X.; Chen, X.;
Fang, W.; Dolg, M. Angew. Chem. Int. Ed. 2015, 54, 14295-14298. (b)
Wang, H.; Fang, W.-H.; Chen, X. J. Org. Chem. 2016, 81, 7093-7101.
(22) For examples of intramolecular hydrogen abstraction, see: (a)
Tobe, Y.; Iseki, T.; Kakiuchi, K.; Odaira, Y. Tetrahedron Lett. 1984, 25,
3895-3896. (b) Le Blanc, S.; Pete, J.-P. ; Piva, O. Tetrahedron Lett.
1992, 33, 1993–1996.
REFERENCES
(1) (a) Ciamician, G.; Silber, P. Ber. Dtsch. Chem. Ges. 1908, 41,
1928-1935. (b) Büchi, G.; Goldman, I. M. J. Am. Chem. Soc. 1957, 79,
4741-4748.
(2) (a) Schenck, G. O.; Hartmann, W.; Mannsfeld, S.-P.; Metzner,
W.; Krauch, C. H. Chem. Ber. 1962, 95, 1642-1647. (b) De Mayo, P.;
Takeshita, H.; Sattar, A. B. M. A. Proc. Chem. Soc. 1962, 119. (c)
Eaton, P. E. J. Am. Chem. Soc. 1962, 84, 2454-2455.
(3) Reviews: (a) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org.
Chem. 2007, 4801-4815. (b) Hoffmann, N. Chem. Rev. 2008, 108, 1052-
1103. (c) Bach, T.; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000-
1045. (d) Kärkäs, M. D.; Porco, Jr., J. A.; Stephenson, C. R. J. Chem.
Rev. 2016, 116, 9683-9747.
(4) Recent review: Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T.
Chem. Rev. 2016, 116, 9748-9815.
(5) (a) Corey, E. J.; Mitra, R. B.; Uda, H. J. Am. Chem. Soc. 1963, 85,
362-363. (b) Corey, E. J.; Mitra, R. B.; Uda, H. J. Am. Chem. Soc. 1964,
86, 485-492.
(6) For reviews covering enantioselective [2+2] photocycloaddi-
tion reactions, see: (a) Xu, Y.; Conner, M. L.; Brown, M. K. Angew.
Chem. Int. Ed. 2015, 54, 11918-11928. (b) Brimioulle, R.; Lenhart, D.;
Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2015, 54, 3872-3890.
(7) For key contributions to enantioselective catalytic photochem-
ical reactions, see: (a) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A.
Nature 1989, 341, 225-226. (b) Bauer, A.; Westkämper, F.; Grimme, S.;
Bach, T. Nature 2005, 436, 1139-1140. (c) Nicewicz, D. A.; MacMillan,
D. W. C. Science, 2008, 322, 77-80.
(8) For auxiliary-based methods, see: (a) Tolbert, L. M.; Ali, M. B.
J. Am. Chem. Soc. 1982, 104, 1742-1744. (b) Lange, G. L.; Decicco, C.;
Tan, S. L; Chamberlain, G. Tetrahedron Lett. 1985, 26, 4707-4710. (c)
Herzog, H.; Koch, H.; Scharf, H.-D.; Runsink, J. Tetrahedron 1986, 42,
3547-3558. (d) Inoue, Y. Chem. Rev. 1992, 92, 741-770. (e) Chen, C.;
Chang, V.; Cai, X.; Duesler, E.; Mariano, P. S. J. Am. Chem. Soc. 2001,
123, 6433-6434. (f) Faure, S.; Piva-Le-Blanc, S.; Bertrand, C.; Pete, J.-
P.; Faure, R.; Piva, O. J. Org. Chem. 2002, 67, 1061-1070. (g) Inhülsen,
(23) Boger, D. L., Zhang, M.; Haider, N. Dimethyl 1,2,4,5-
Tetrazine-3,6-dicarboxylate. In e-EROS Encyclopedia of Reagents for
Organic Synthesis [Online]; Wiley & Sons, Posted April 15, 2001.
ct (accessed Jan 25, 2018).
ACS Paragon Plus Environment