Please do not adjust margins
Dalton Transactions
Page 11 of 13
DOI: 10.1039/C7DT04560C
Journal Name
ARTICLE
§§ The solid-state 13C CP-MAS NMR spectrum of 2c displays
broad signals in the expected diamagnetic area, i.e.: at similar
chemical shifts than those of the solution 13C NMR peaks.
Lorber, R. Choukroun and L. Vendier, Organometallics, 2008,
27, 5017; (f) T. C. Davenport and T. D. Tilley, Angew. Chem.
Int. Ed., 2011, 50, 12205.
§§§ The triplet state is 16.0 kcal.mol-1 less stable than the singlet 13 For a μ3-η1,η1,η1-bridging acetonitrile ligand with Hg, see: I.
state for 2a, and 19.9 kcal.mol-1 less stable for 2c
.
A. Tikhonova, F. M. Dolgushin, A. I. Yanovsky, Z. A. Starikova,
P. V. Petrovskii, G. G. Furin and V. B. Shur, J. Organomet.
Chem., 2000, 613, 60.
§§§§ A stabilizing interaction between the PF6- counteranion and
the cationic nickel centre cannot be excluded. However the solid
state FTIR spectra of 2a-d all show a P–F stretch in the same 14 For a μ3-η2,η2-bridging acetonitrile ligand with Nb, see: H. A.
frequency range (ca. 830 cm-1) and with the same shape as
N. Joensen, G. K. Hansson, S. G. Kozlova, A. L. Gushchin, I.
Søtofte and B.-L. Ooi, Inorg. Chem., 2010, 49, 1720.
15 D. Walther, H. Schönberg, E. Dinjus and J. Sieler, J.
Organomet. Chem., 1987, 334, 377.
-
observed in [Ni(η5-C5R5)(NHC)(NCMe)]+PF6 complexes where no
such interaction is found.6a
1
2
M. A. Ortuño, S. Conejero and A. Lledós, Beilstein J. Org. 16 For another example of μ2,η1,η2-acetonitrile ligand with Mn,
Chem., 2013,
9, 1352.
see: F. J. García Alonso, M. García Sanz, V. Riera, A. Anillo
Abril, A. Tripicchio and F. Ugozzoli, Organometallics, 1992,
11, 801.
(a) C. A. Laskowski and G. L. Hillhouse, J. Am. Chem. Soc.,
2008, 130, 13846; (b) T. Tamaki, M. Nagata, M. Ohashi and S.
Ogoshi, Chem. Eur. J., 2009, 15, 10083; (c) C. A. Laskowski, G. 17 In a formally saturated complex, the side-on nitrile is viewed
R. Morello, C. T. Saouma, T. R. Cundari and G. L. Hillhouse,
Chem. Sci., 2013, , 170; (d) Y. Hoshimoto, T. Ohata, M.
Ohashi and S. Ogoshi, Chem. Eur. J., 2014, 20, 4105; (e) S.
Pelties and R. Wolf, Organometallics, 2016, 35, 2722.
M. Henrion, A. M. Oertel, V. Ritleng and M. J. Chetcuti, 19 H. Endres, In: Comprehensive Coordination Chemistry, Vol. 2,
as a classic two-electron donor: T. C. Wright, G. Wilkinson,
M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton
Trans., 1986, 2017.
4
18 G. Rouschias and G. Wilkinson, J. Chem. Soc. A, 1968, 489.
3
4
Chem. Commun., 2013, 49, 6424. Eds.: G. Wilkinson, R. D. Gillard and J. A. McCleverty,
(a) C. D. Abernethy, A. H. Cowley and R. A. Jones, J. Pergamon, Oxford, 1987, p. 261.
Organomet. Chem., 2000, 596, 3; (b) V. Ritleng, E. Brenner 20 Three-coordinate Y-shaped Ni(II) complexes are generally
and M. J. Chetcuti, J. Chem. Educ., 2008, 85, 1646; (c) S.
Milosevic, E. Brenner, V. Ritleng and M. J. Chetcuti, Dalton
Trans., 2008, 1973; (d) J. Cooke, O. C. Lightbody, J. Chem.
Educ., 2011, 88, 88; (e) A. M. Oertel, V. Ritleng and M. J.
Chetcuti, Organometallics, 2012, 31, 2829.
A. M. Oertel, J. Freudenreich, J. Gein, V. Ritleng, L. F. Veiros
and M. J. Chetcuti, Organometallics, 2011, 30, 3400.
(a) A. M. Oertel, V. Ritleng, M. J. Chetcuti and L. F. Veiros, J.
Am. Chem. Soc., 2010, 132, 13588; (b) A. M. Oertel, V.
Ritleng, A. Busiah, L. F. Veiros and M. J. Chetcuti,
Organometallics, 2011, 30, 6495.
paramagnetic, see for instance: (a) P. L. Holland, T. R.
Cundari, L. L. Perez, N. A. Eckert and R. J. Lachiotte, J. Am.
Chem. Soc., 2002, 124, 14416; (b) N. J. Hartmann, G. Wu and
T. W. Hayton, Angew. Chem. Int. Ed., 2015, 54, 14956.
21 (a) J. Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem., 2013,
19. (b) S. A. Johnson, Dalton Trans., 2015, 44, 10905. (c) N.
Chatani, Nickel-Catalyzed C–H Bond Functionalization
Utilizing an N,N′-Bidentate Directing Group. In: C–H Bond
Activation and Catalytic Functionalization II. Topics in
Organometallic Chemistry. Vol. 56, P. Dixneuf and H. Doucet
(eds), Springer, 2015.
5
6
7
(a) W. A. Herrmann, O. Runte and G. Artus, J. Organomet. 22 (a) J. Canivet, J. Yamaguchi, I. Ban and K. Itami, Org. Lett.,
Chem., 1995, 501, C1. (b) M. V. Baker, P. J. Barnard, S. K.
Brayshaw, J. L. Hickey, B. W. Skelton and A. H. White, Dalton
Trans., 2005, 37. (c) E. S. Chernyshova, R. Goddard and K.-R.
Pörschke, Organometallics, 2007, 26, 3236. (d) Q. Teng and
H. V. Huynh, Dalton Trans., 2017, 46, 614.
2009, 11, 1733; (b) H. Hachiya, K. Hirani, T. Satoh and M.
Miura, Org. Lett., 2009, 11, 1737; (c) O. Kobayashi, D.
Uraguchi and T. Yamakawa, Org. Lett., 2009, 11, 2679; (d) T.
Yamamoto, K. Muto, M. Komiyama, J. Canivet, J. Yamaguchi
and K. Itami, Chem. Eur. J., 2011, 17, 10113.
8
9
C. Jandl and A. Pöthig, Chem. Commun., 2017, 53, 2098.
(a) S. J. Anderson, F. J. Wells, G. Wilkinson, B. Hussain and M.
B. Hursthouse, Polyhedron, 1988, 7, 2615; (b) J. Barrera, M.
Sabat and W. D. Harman, J. Am. Chem. Soc., 1991, 113, 8178;
(c) J. Barrera, M. Sabat and W. D. Harman, Organometallics,
1993, 12, 4381; (d) S. Thomas, E. R. T. Tiekink and C. G.
Young, Organometallics, 1996, 15, 2428; (e) S. Thomas, C. G.
Young and E. R. T. Tiekink, Organometallics, 1998, 17, 182; (f)
H. Wadepohl, U. Arnold, H. Pritzkow, M. J. Calhorda and L. F.
Veiros, J. Organom. Chem., 1999, 587, 233.
23 (a) K. Muto, J. Yamaguchi and K. Itami, J. Am. Chem. Soc.,
2012, 134, 169; (b) K. Muto, J. Yamaguchi, A. Lei and K. Itami,
J. Am. Chem. Soc., 2013, 135, 16384; (c) J. Wang, D. M.
Ferguson and D. Kalyani, Tetrahedron, 2013, 69, 5780; (d) H.
Xu, K. Muto, J. Yamaguchi, C. Zhao, K. Itami and D. G.
Musaev, J. Am. Chem. Soc., 2014, 136, 14834; (e) K. Muto, T.
Hatakeyama, J. Yamaguchi and K. Itami, Chem. Sci., 2015, 6,
6792; (f) Y. Wang, S.-B. Wu, W.-J. Shi and Z.-J. Shi, Org. Lett.,
2016, 18, 2548.
24 (a) K. Amaike, K. Muto, J. Yamaguchi and K. Itami, J. Am.
Chem. Soc., 2012, 134, 13573; (b) A. Kruckenberg, H.
Wadepohl and L. H. Gade, Organometallics, 2013, 32, 5153;
(c) L. Meng, Y. Kamada, K. Muto, J. Yamaguchi and K. Itami,
Angew. Chem. Int. Ed., 2013, 52, 10048.
10 C. Jandl, S. Stegbauer and A. Pöthig, Acta Cryst C, 2016, 72
509.
,
11 For μ2-η2,η2-crosswire bridging acetonitrile ligands with
group 6 metals, see: (a) J. L. Eglin, E. M. Hines, E. J. Valente
and J. D. Zubkowski, Inorg. Chim. Acta, 1995, 229, 113; (b) F. 25 J. A. Widegren and R. G. Finke, J. Mol. Cat. A, 2003, 198, 317.
A. Cotton and F. E. Kühn, J. Am. Chem. Soc., 1996, 118, 5826; 26 F. Besselièvre, F. Mahuteau-Betzer, D. S. Grierson and
(c) F. A. Cotton, L. M. Daniels, C. A. Murillo and X. Wang,
Polyhedron, 1998, 17, 2781.
S.Piguel, J. Org. Chem., 2008, 73, 3278.
27 H. V. Huynh and J. Wu, J. Organomet. Chem., 2009, 694, 323.
12 For μ2-η1,η1-bridging acetonitrile ligands with alkali metals, 28 For a 1H NMR spectrum at 3.10-2 mol.L-1 see ref. 3.
lanthanides, and group 4, 11 and 12 metals, see: (a) W. J. 29 (a) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Evans, M. A. Greci and J. W. Ziller, Chem. Commun., 1998, Analysis (Release 97-2), 1998. Göttingen, Germany; (b) G. M.
2367; (b) J. D. Beckwith, M. Tschinkl, A. Picot, M. Tsunoda, R. Sheldrick, Acta Crystallogr., 2008, A64, 112.
Bachman and F. P. Gabbaï, Organometallics, 2001, 20, 3169; 30 G. M. Sheldrick, SADABS, Program for Empirical Absorption
(c) P. Lin, W. Clegg, R. W. Harrington and R. A. Henderson,
Dalton Trans., 2005, 2349; (d) M. R. A. Al-Mandhary, C. M.
Fitchett and P. J. Steel, Aust. J. Chem., 2006, 59, 307; (e) C.
Correction, University of Göttingen, Göttingen, Germany,
1996.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 11
Please do not adjust margins