2558
J. Spencer et al.
LETTER
Table 2 Reduction of Nitrobenzene Derivatives
the microwave-mediated route. The reduction of
nitroheteroaromatics8 proceeds smoothly under micro-
wave or thermal conditions; 5-aminoquinoline could be
synthesised in excellent yields (5 mmol scale, unopti-
mised) within two hours in refluxing EtOH (Scheme 1).
H
H
Mo(CO)6, EtOH
3 equiv DBU
H
NH2
R1
H
NO2
R1
R3
R3
MW, 150 °C,
15–30 min
R2
R2
In summary, we have developed a general, convenient,
expedited microwave-mediated method for the synthesis
of a series of anilines from their corresponding nitro pre-
cursors, which displays excellent chemoselectivity.9
Current work in our group is exploring the generalization
of this reduction process towards the synthesis of poly-
substituted aniline intermediates found in bioactive mole-
cules.10
1
2
Product R1
R2
R3
Yield of 2 (%)a
2b
2c
2d
2e
2f
H
H
OMe
Me
Me
H
85
H
H
89,b,c 50d
66b
F
H
C(O)Me
H
50b
References and Notes
H
H
H
H
H
H
Br
H
H
Cl
C(O)Me
H
77b
(1) Reviews: (a) Larhed, M.; Hallberg, A. Drug Discovery
Today 2001, 6, 406. (b) Kappe, C. O. Angew. Chem. Int. Ed.
2004, 43, 6250. (c) Lidstrom, P.; Tierney, J.; Wathey, B.;
Westman, J. Tetrahedron 2001, 57, 9225. (d) Collins, J. M.;
Leadbeater, N. E. Org. Biomol. Chem. 2007, 5, 1141.
(e) Mavandadi, F.; Lidstrom, P. Curr. Top. Med. Chem.
2004, 4, 773. (f) Hayes, B. L. Aldrichimica Acta 2004, 37,
66. (g) Mavandadi, F.; Pilotti, A. Drug Discovery Today
2006, 11, 165.
(2) (a) Larock, R. C. Comprehensive Organic Transformations;
VHC Publishers: New York, 1987. (b) Clayden, J.;
Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry;
Oxford University Press: New York, 2006.
(3) (a) Chapman, N.; Conway, B.; O’Grady, F.; Wall, M. D.
Synlett 2006, 1043. (b) Meshram, H. M.; Ganesh, Y. S. S.;
Sekhar, K. C.; Yadav, J. S. Synlett 2000, 993. (c) Vass, A.;
Dudas, J.; Toth, J.; Varma, R. S. Tetrahedron Lett. 2001, 42,
5347.
(4) Vidal, T.; Petit, A.; Loupy, A.; Gedye, R. N. Tetrahedron
2000, 56, 5473.
(5) Suresh, I.; Kulkarni, G. M. Synth. Comm. 2004, 34, 721.
(6) (a) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750.
(b) Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4;
and references cited therein.
2g
2h
2i
H
C(O)Me
71b
I
H
89b
H
CN
71b
2j
H
C(O)NH2
81b
2k
2l
CH=CH2
H
81b
H
Br
H
H
H
89,a 52b
93
2m
2n
2o
H
Br
79
CH2OH
90
a Isolated yield after column chromatography. General conditions:
150 °C, 300 W (power), 30 min, EtOH (solvent), 1 equiv Mo(CO)6,
3 equiv DBU.
b Reaction time = 15 min.
c Quantitative conversion by 1H NMR.
d 0.5 Equiv Mo(CO)6, 1.5 equiv DBU; conversion determined by
1H NMR; 15 min reaction time.
(7) (a) Typical Work-up
Mo(CO)6,
3 equiv DBU
R
R
After solvent concentration, the resulting crude product is
passed over a short SiO2 plug (6 cm × 3 cm). Typical eluent:
neat CH2Cl2 to 5:1 CH2Cl2–acetone gradient. All products
were characterised by 1H NMR, 13C NMR, GC-MS, or MS
and correspond to commercial samples or literature values
(see ref. 7b and also ref. 9). Compound 2o: 1H NMR (270
MHz): d = 3.67 (2 H, br s), 4.67 (2 H, s), 6.54 (1 H, d, J = 8.4
Hz), 6.78 (1 H,s), 7.07 (1 H, s), 7.11 (1 H, s). 13C NMR (67
MHz): d = 62.9, 115.1, 121.1, 129.8, 138.7, 145.4. (b) The
Aldrich Library of 13C and 1H FT NMR Spectra, 1st ed.;
Pouchert, C. J.; Behnke, J., Eds.; Aldrich Chemical
Company: USA, 1993.
O2N
H2N
EtOH
1
2
NH2
O
H2N
N
2g
2p
isolated yield of products 71%; MW, 15 min
75%; thermal, 2 h
92%; MW, 15 min
82%; thermal, 2 h
Scheme 1 Microwave-mediated vs. thermal-mediated reductions
(8) Spencer, J.; Rathnam, R. P.; Patel, H.; Anjum, N.,
manuscript in preparation.
(9) Similar ‘multifunctional’ nitro analogues were selectively
reduced with H2 in the presence of catalytic gold
nanoparticles: (a) Corma, A.; Serna, P. Science 2006, 313,
332. (b) See also: Blaser, H. U. Science 2006, 313, 312; and
references cited therein.
(10) For example; kinase inhibitors: (a) Knesl, P.; Roseling, D.;
Jordis, U. Molecules 2006, 11, 286; and references cited
therein. (b) CNS active molecules: Adams, D. R.; Duncton,
M. A. J.; Roffey, J. R. A.; Spencer, J. Tetrahedron Lett.
2002, 43, 7581.
The reduction process is rather general, rapid and gives a
high yield of product. It operates for electron-rich and
electron-poor nitroarenes and tolerates ortho substituents,
halides, and other functional groups such as ketones, alco-
hols, vinyl, nitrile, and benzamides. We have also been
able to reduce the reaction times to 15 minutes (e.g.,
Table 2, 2c–l). This reaction can also be carried out
thermally with yields comparable to those observed for
Synlett 2007, No. 16, 2557–2558 © Thieme Stuttgart · New York