10.1002/anie.201809251
Angewandte Chemie International Edition
COMMUNICATION
We thank the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Canadian Institutes for Health
Research (CIHR), and the Canada Research Chairs Program for
financial support. We also thank Dr. Pongphak Chidchob for
helpful discussions. H.F.S. is a Cottrell Scholar of the Research
Corporation.
Keywords: DNA nanotechnology • DNA printing • DNA-
templated reactions• Self-assembly • Branched DNA structures
[1]
[2]
a) H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean,
Science 2003, 301, 1882-1884; b) J. Sharma, R. Chhabra, A.
Cheng, J. Brownell, Y. Liu, H. Yan, Science 2009, 323, 112-116.
a) P. W. K. Rothemund, Nature 2006, 440, 297; b) B. Wei, M. Dai,
P. Yin, Nature 2012, 485, 623; c) Y. Ke, L. L. Ong, W. M. Shih, P.
Yin, Science 2012, 338, 1177-1183; d) E. Winfree, F. Liu, L. A.
Wenzler, N. C. Seeman, Nature 1998, 394, 539; e) S. M. Douglas,
H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009,
459, 414; f) E. Benson, A. Mohammed, J. Gardell, S. Masich, E.
Czeizler, P. Orponen, B. Högberg, Nature 2015, 523, 441.
a) A. A. Greschner, V. Toader, H. F. Sleiman, J. Am. Chem. Soc
2012, 134, 14382-14389; b) C. K. McLaughlin, G. D. Hamblin, H. F.
Sleiman, Chem. Soc. Rev. 2011, 40, 5647-5656; c) J. Zimmermann,
M. P. J. Cebulla, S. Mönninghoff, G. v. Kiedrowski, Angew. Chem.
Int. Ed. 2008, 47, 3626-3630; d) K. V. Gothelf, R. S. Brown, Chem.
Eur. J 2005, 11, 1062-1069.
a) I. Eryazici, T. R. Prytkova, G. C. Schatz, S. T. Nguyen, J. Am.
Chem. Soc 2010, 132, 17068-17070; b) F. A. Aldaye, H. F. Sleiman,
J. Am. Chem. Soc 2007, 129, 13376-13377; c) E. Masayuki, S. N.
C., M. Tetsuro, Angew. Chem. Int. Ed. 2005, 44, 6074-6077; d) A.
A. Greschner, K. E. Bujold, H. F. Sleiman, J. Am. Chem. Soc 2013,
135, 11283-11288; e) I. Eryazici, I. Yildirim, G. C. Schatz, S. T.
Nguyen, J. Am. Chem. Soc 2012, 134, 7450-7458.
[3]
[4]
[5]
[6]
N. C. Seeman, H. F. Sleiman, Nat. Rev. Mat. 2017, 3, 17068.
H. Yang, C. K. McLaughlin, F. A. Aldaye, G. D. Hamblin, A. Z. Rys,
I. Rouiller, H. F. Sleiman, Nat. Chem. 2009, 1, 390.
Figure 5. a) Making a copy from mother template (trimer-2primers) b)
denaturing PAGE monitors the process. Lane 1: crude reaction mixture
containing mother template, daughter, excess complementary ssDNA. Lane 2:
control sample prepared under the same reaction condition without the mother
template. Lane 3: reaction mixture after removing mother template and excess
ssDNA complementary using streptavidin- magnetic bead. Lane 4: mother
template (trimer-2primers) (control).
[7]
M. R. Hartman, D. Yang, T. N. N. Tran, K. Lee, J. S. Kahn, P.
Kiatwuthinon, K. G. Yancey, O. Trotsenko, S. Minko, D. Luo, Angew.
Chem. 2013, 125, 8861-8864.
B. J. Hong, I. Eryazici, R. Bleher, R. V. Thaner, C. A. Mirkin, S. T.
Nguyen, J. Am. Chem. Soc 2015, 137, 8184-8191.
a) H. A. Becerril, R. M. Stoltenberg, D. R. Wheeler, R. C. Davis, J.
N. Harb, A. T. Woolley, J. Am. Chem. Soc 2005, 127, 2828-2829; b)
S. Rudiuk, A. Venancio-Marques, G. Hallais, D. Baigl, Soft Matter
2013, 9, 9146-9152.
[8]
[9]
[10]
[11]
a) P. Richa, M. Andreas, Chem. Asia J. 2011, 6, 1450-1455; b) H.
Bußkamp, S. Keller, M. Robotta, M. Drescher, A. Marx, Beilstein J.
Org. Chem. 2014, 10, 1037-1046.
In summary, we have demonstrated a facile method to “print”
different DNA strands onto a small molecule core with controllable
valency, DNA directionalities and sequences. While we initially
used a C12 spacer, MD simulations and experiments showed that
DNA strands can be directly attached to the core. The DNA-
imprinted small molecule can be extended asymmetrically using
PCR and it can be chemically self-replicated to make a daughter
generation. Our next step aims to control the “printing” process
using external stimuli such as pH, strand displacement or other
added biomolecules, an approach that can yield sensitive
biological detection tools. The ease with which multivalent DNA-
small molecule hybrids can be synthesized and purified will make
them useful in the field of DNA nanotechnology as building blocks
for wireframe DNA nanoobjects, branching staple strands in DNA
origami and tunable templates for logic gates and material
organization. By blending together DNA with synthetic molecules,
DNA nanotechnology can acquire new structural motifs and can
impart functionality to its typically passive DNA structures.
a) M. Martin, A. Carolin, B. Matthias, P. Oliver, S. S. A., S. Arunoday,
M. Thierry, W. Wolfgang, B. Stefan, R. Clemens, ChemBioChem
2009, 10, 1335-1339; b) A. Singh, M. Tolev, M. Meng, K. Klenin, O.
Plietzsch, C. I. Schilling, T. Muller, M. Nieger, S. Bräse, W. Wenzel,
C. Richert, Angew. Chem. Int. Ed. 2011, 50, 3227-3231.
a) A. I. Ponomarenko, V. A. Brylev, K. A. Sapozhnikova, A. V.
Ustinov, I. A. Prokhorenko, T. S. Zatsepin, V. A. Korshun,
Tetrahedron 2016, 72, 2386-2391; b) G. Clave, G. Chatelain, A.
Filoramo, D. Gasparutto, C. Saint-Pierre, E. Le Cam, O. Pietrement,
V. Guerineau, S. Campidelli, Org. Biomol. Chem. 2014, 12, 2778-
2783.
[12]
[13]
[14]
R. V. Thaner, I. Eryazici, O. K. Farha, C. A. Mirkin, S. T. Nguyen,
Chem. Sci. 2014, 5, 1091-1096.
K. D. Okochi, L. Monfregola, S. M. Dickerson, R. McCaffrey, D. W.
Domaille, C. Yu, G. R. Hafenstine, Y. Jin, J. N. Cha, R. D. Kuchta,
M. Caruthers, W. Zhang, J. Org. Chem. 2017, 82, 10803-10811.
a) M. Endo, H. Sugiyama, ChemBioChem 2009, 10, 2420-2443; b)
K. V. Gothelf, A. Thomsen, M. Nielsen, E. Cló, R. S. Brown, J. Am.
Chem. Soc 2004, 126, 1044-1046; c) C. Panagiotidis, S. Kath-
Schorr, G. v. Kiedrowski, ChemBioChem 2016, 17, 254-259; d) E.
Utagawa, A. Ohkubo, M. Sekine, K. Seio, J. Org. Chem. 2007, 72,
8259-8266.
L. H. Eckardt, K. Naumann, W. Matthias Pankau, M. Rein, M.
Schweitzer, N. Windhab, G. von Kiedrowski, Nature 2002, 420, 286.
a) T. Trinh, C. Liao, V. Toader, M. Barłóg, H. S. Bazzi, J. Li, H. F.
Sleiman, Nat. Chem. 2018, 10, 184; b) T. G. W. Edwardson, K. L.
Lau, D. Bousmail, C. J. Serpell, H. F. Sleiman, Nat. Chem. 2016, 8,
162.
[15]
[16]
[17]
Acknowledgements
This article is protected by copyright. All rights reserved.