8
R. EISAVI ET AL.
water: Efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature.
J Mol Catal A: Chem. 2007;274:109–115.
[15] Reddy CS, Nagavani S. LiClO4 catalyzed mild and efficient method for the synthesis of thiiranes
from oxiranes. Heteroatom Chem. 2008;19:97–99.
[16] Tamami B, Parvanak Borujeny K. Synthesis of thiiranes from oxiranes using cross-linked
polystyrene supported aluminium chloride as a catalyst. Synth Commun. 2004;34:65–70.
[17] Salehi P, Khodaei MM, Zolfigol MA, Keyvan A. Magnesium hydrogensulfate: a cheap and effi-
cient catalyst for the conversion of epoxides into β-alkoxy alcohols, vicinal-diols, and thiiranes.
Synth Commun. 2003;33:3041–3048.
[18] Moghadam M, Tangestaninejad S, Mirkhani V, Shaibani R. Rapid and efficient ring open-
ing of epoxides catalyzed by a new electron deficient tin(IV) porphyrin. Tetrahedron.
2004;60:6105–6111.
[19] Parvanak Borujeny K. Conversion of oxiranes to thiiranes catalyzed with silica gel-supported
aluminium chloride. Synth Commun. 2005;35:2575–2579.
[20] Kiasat AR, Kazemi F, Fallah Mehrjardi M. Solvent-free conversion of oxiranes to thiiranes with
thiourea. Phosphorus Sulfur Silicon. 2004;179:1841–1844.
[21] Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I, Taghavi SA. High-
valent tin(IV) porphyrin, SnIV(TPP)(BF4)2, as an efficient catalyst for the ring opening of
epoxides. Catal Commun. 2007;8:2087–2095.
[22] Wu L, Wang Y, Yan F, Yang C. Facile conversion of epoxides to thiiranes with ammonium
thiocyanate catalyzed with etidronic acid. Bull Korean Chem Soc. 2010;31:1419–1420.
[23] Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable
nanocatalysts. Chemical Rev. 2011;111:3036–3075.
[24] Shylesh S, Schünemann V, Thiel WR. Magnetically separable nanocatalysts: bridges between
homogeneous and heterogeneous catalysis. Angew Chem Int Ed. 2010;49:3428–3459.
[25] Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the frontier between
homogeneous and heterogeneous catalysis. Angew Chem Int Ed. 2005;44:7852–7872.
[26] Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable
catalysts in the development of sustainable methodologies. Chem Soc Rev. 2013;42:3371–3393.
[27] Baghbanian SM, Farhang M. CuFe2O4 nanoparticles: a magnetically recoverable and reusable
catalyst for the synthesis of coumarins via pechmann reaction in water. Syn Commun.
2014;44:697–706.
[28] Karami B, Hoseini SJ, Nikoseresht S, Khodabakhshi S. Fe3O4 nanoparticles: a powerful and
magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes. Chin Chem
Lett. 2012;23:173–176.
[29] Kundu D, Chatterjee T, Ranu BC. Magnetically separable CuFe2O4 nanoparticles catalyzed
ligand-free C-S coupling in water: access to (E)- and (Z)-styrenyl-, heteroaryl and sterically
hindered aryl sulfides. Adv Synth Catal. 2013;355:2285–2296.
[30] Nemati F, Saeedirad R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups
as a magnetically separable catalyst for green and efficient synthesis of functionalized
pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin Chem
Lett. 2013;24:370–372.
[31] Ma FP, Li PH, Li BL, et al. A recyclable magnetic nanoparticles supported antimony catalyst
for the synthesis of N-substituted pyrroles in water. Appl Catal A: Gen. 2013;457:34–41.
[32] Li PH, Li BL, An ZM, Mo LP, Cui ZS, Zhang ZH. Magnetic nanoparticles (CoFe2O4)-
supported phosphomolybdate as an efficient, green, recyclable catalyst for synthesis of β-
hydroxy hydroperoxides. Adv Synth Catal. 2013;355:2952–2959.
[33] Feng C, Zhang HY, Shang NZ, Gao ST, Wang C. Magnetic graphene nanocomposite as an
efficient catalyst for hydrogenation of nitroarenes. Chin Chem Lett. 2013;24:539–541.
[34] Hajipour AR, Karimzadeh M, Azizi G. Highly efficient and magnetically separable nano-
CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides. Chin Chem Lett.
2014;25:1382–1386.